跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈仕鴻
研究生(外文):Shen Shih-Hung
論文名稱:改良式三維天車系統之非線性適應性控制
論文名稱(外文):An Improved Nonlinear Adaptive Control for 3-D Overhead Crane System
指導教授:楊榮華楊榮華引用關係
指導教授(外文):Yang Jung-Hua
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:84
中文關鍵詞:天車系統李亞普洛夫穩定性非線性控制適應性控制
外文關鍵詞:Overhead Crane SystemLyapunov StabilityNonlinear ControlAdaptive Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統上,天車系統都是以人工的方式來操作。為了減少人事的開銷,天車的自動控制系統因而開發。在自動控制的過程中,最重要的是要有精準、快速的定位、最小的擺盪角度、還要有高度的安全性。所以控制過程中的穩定性是很重要的。過去在天車系統上,有很多控制器的開發與研究,現在我們設計了三種非線性的控制方法,含括了台車與擺角的動態,且可保證整個閉迴路系統的穩定性。為了解決未知參數的問題,我們使用適應性控制法則來設計此非線性控制器。在這個控制法則下,將有精準的定位以及最小的擺盪。當然,我們也利用了穩定性的證明來驗證此控制法則的正確性,且透過電腦模擬來加以驗證此控制法則的可用性。確定可用性後的控制系統在小尺寸的天車模型完成實際測試,證明它的性能完善,可以有效的在台車定位的過程有效地抑制由外部干擾和啟動及停止瞬間所引起的擺角搖晃。
Traditionally, the overhead crane system is always operated by human. In order to reduce the cost of personnel expense, the automatic control of the overhead crane system is developed. In process of the automatic control, the most important issues are high positioning accuracy, short transportation time, small sway angle, and high safety. So that the stabilization control for overhead crane system becomes more and more major. There are many kinds of control schemes in the overhead crane system, and a nonlinear control scheme which includes both the cart motion dynamics and swing angle dynamics is designed to assure the whole closed-loop system stability. To deal with parametric uncertainty, the nonlinear controller is developed with an adaptive version. In this control laws, the position will locate accurate and the swing angle will achieve minimal swing. Besides, we also prove the stability by Lyapunov conception. We also use the computer simulations and experiments to validate the performance of the controller.
CONTENTS
摘 要 I
Abstract II
Acknowledgement III
CONTENTS IV
List of Figures VI
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Survey of Related Researches 2
1.3 Contribution of the Thesis 4
1.4 Organization of the Thesis 4
CHAPTER 2 DYNAMIC MODEL 5
2.1 Dynamic Model of Overhead Crane 5
CHAPTER 3 CONTROLLER DESIGN 8
3.1 Model formulation 8
3.2 Adaptive Control Design 10
3.2.1 Computer Simulation Results 14
3.3 Simplified Version for Adaptive Control 21
3.3.1 Computer Simulation Results 23
3.4 PD Control with Adaptive Gravity Compensation 31
3.4.1 Computer Simulation Results 34
CHAPTER 4 EXPERIMANTAL VERIFICATION 41
4.1 Equipment Description 41
4.2 Experimental Results 46
4.2.1 Experiments for the Modified Adaptive Control 47
4.2.2 Experiments for the Simplified Adaptive Control 54
4.2.3 Experiments for the Adaptive PD Control 61
CHAPTER 5 CONCLUSION 68
References 69
APPENDIX A 72
APPENDIX B 75
APPENDIX C 77
Bio-sketch of author 84
References
[1] Philippe Martin, Santosh Devasia, and Brad Paden, 1996, “A Different Look at Output Tracking: Control of a VTOL Aircraft.” Automatica, Vol. 32, No. 1, pp. 101-107.
[2] Yannick Morel, and Alexander Leonessa, 2003, “Adaptive Nonlinear Tracking Control of an Underactuated Nonminimum Phase Model of a Marine Vehicle Using Ultimate Boundedness.” Proc. of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, pp. 3097-3102.
[3] Xuezhen Wang, and Degang Chen, 2006, “Output Tracking Control of a One-Link Flexible Manipulator via Causal Inversion.” IEEE Transactions on Control Systems Technology, Vol. 14, No. 1, pp. 141-148.
[4] Qiguo Yan, 2003, “Output Tracking of Underactuated Rotary Inverted Pendulum by Nonlinear Controller.” Proc. of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, pp. 2395-2400.
[5] Y. Fang, E. Zergeroglu, W. E. Dixon, and D.M. Dawson, 2001, “Nonlinear Coupling Control Laws for an Overhead Crane System.” Proc. of the 2001 IEEE International Conference on Control Applications, pp. 639-644.
[6] B. Kiss, J. Levine, and Ph. Mullhaupt, 2000, “A Simple Output Feedback PD controller for Nonlinear Cranes.” Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 5097-5101.
[7] F. Boustany, and B. d’Andrea-Novel, 1992, “Adaptive Control of an Overhead Crane Using Dynamic Feedback Linearization and Estimation Design.” Proc. of the 1992 IEEE International conference on Robotics and Automation, pp. 1963-1968.
[8] W. Li, and Q. Tang, 1993, “Control Design for a Highly Nonlinear System.” Proc. of the ASME Annual Winter Meeting, Vol. 50, Symposium on Mechatronics, New Orleans, LA, pp. 21-26.
[9] Barmeshwar Vikramaditya, and Rajesh Rajamani, 2000, “Nonlinear Control of a trolley crane system.” Proc. of the American Control Conference Chicago, Illinois, pp. 1032-1036.
[10] Kazunobu Yoshida, and Hisashi Kawabe, 1992, “A Design of Saturating Control with a Guaranteed Cost and Its Application to the Crane Control System.” IEEE Transactions on Automatic Control, Vol. 37, No. 1, pp. 121-127.
[11] Chung Choo Chung, and John Hauser, 1995, “Nonlinear Control of a Swinging Pendulum.” Automatica, Vol. 31, No. 6, pp. 851-862.
[12] Dian-Tong Liu, Jian-Qiang Yi, and Dong-Bin Zhao, 2003, “Fuzzy tuning sliding mode control of transporting for an overhead crane.” Proc. the second International Conference on Machine Learning and Cybernetics, Xian, China, pp. 2541-2546.
[13] Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu, 2001, “Nonlinear coupling control laws for 3-DOF overhead crane system.” Proc. the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, pp. 3766-3771.
[14] T. Ishide, H. Uchida, and S. Miyakawa, 1991, “Application of a fuzzy neural network in the automation of crane system.” Proc. of the 9th Fuzzy System Symposium, pp. 29-33.
[15] J. Yu, F. L. Lewis, and T. Huang, 1995, “Nonlinear feedback control of a gantry crane.” Proc. of the American Control Conference, Seattle, Washington, USA, pp. 4310-4315.
[16] Giorgio Bartolini, Alessandro Pisano, and Elio Usai, 2002, “Second-order sliding-mode control of container cranes.” Proc. of the 38th Automatica, pp. 1783-1790.
[17] Kazunobu Yoshida, 1998, “Nonlinear control design for a crane system with state constraints.” Proc. of the American Control Conference, Philadelphia, Pennsylvania, pp. 1277-1283.
[18] M. J. Er, M. Zribi, and K. L. Lee, 1988, “Variable Structure Control of Overhead Crane.” Proc. of the 1998 IEEE International Conference on Control Applications, Trieste, Italy, pp.398-402.
[19] Jianqiang Yi, Naoyoshi Yubazaki, and Kaoru Hirota, 2003, “Anti-swing and positioning control of overhead traveling crane.” Proc. of the Information Sciences 155, pp. 19-42.
[20] Diantong Liu, Jianqiang Yi, Dongbin Zhao, and Wei Wang, 2004, “Swing-Free Transporting of Two-Dimensional Overhead Crane Using Sliding Mode Fuzzy Control.” Proc. of the 2004 American Control Conference, Boston, Massachusetts, pp. 1764-1769.
[21] J.A. Mendez, L. Acosta, L. Moreno, A. Hamilton, and G.N. Marichal, 1998, “Design of a Neural Network Based Self-Tuning Controller for an overhead crane.” Proc. of the 1998 IEEE International Conference on Control Applications, pp. 168-171.
[22] Ho-Hoon Lee, and Seung-Gap Choi, 2001, “A Model-Based Anti-Swing Control of Overhead Cranes with High Hoisting Speeds.” Proc. of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, pp. 2547-2552.
[23] Wahyudi, and J. Jalani, 2006, “Robust Fuzzy Logic Controller for an Intelligent Gantry Crane System.” First International Conference on Industrial and Information Systems, pp. 497-502.
[24] Wanlop Sridokbuap, Songmoung Nundrakwang, Taworn Benjanarasuth, Jongkol Ngamwiwit and Noriyuki Komine, 2007, “I-PD and PD Controllers Designed by CRA for Overhead Crane System.” International Conference on Control, Automation and Systems, COEX, Seoul, Korea, pp. 326-330.
[25] http://www.novotechnik.com/products/linear/linear_potentiometric.html Accessed 15,May,2008
[26] http://hontko.com.tw/sayaproduct.php?CateID=98&LineID=37 Accessed 29,December,2007
[27] http://global.mitsubishielectric.com/index.html Accessed 29,April,2008
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top