跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳善儉
研究生(外文):Shan-Chien Chen
論文名稱:金奈米修飾多模錐形光纖感測器之特性
論文名稱(外文):Multimode Tapered Fiber Sensor Modified With Nano-gold particle
指導教授:湯兆崙
指導教授(外文):Jawlen Tang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:52
中文關鍵詞:定域化表面電漿共振金奈米粒子折射率錐形光纖漸逝波
外文關鍵詞:nano-gold particlerefractive indextapered fiberevanescent wave and localized surface plasma res
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
光纖修飾金奈米生化感測器是使用定域化表面電漿共振原理,
使金奈米粒子吸收與散射光纖表面的漸逝波,進而增強光纖對折射率感測的靈敏度。為提升光纖感測器的靈敏度,不同研究團隊有不同的改善方式,在本研究中同時使用了兩種方式:(1)對光纖進行錐化,以及(2)在光纖表面修飾球狀金奈米。針對液體樣品折射率的量測,光纖拉伸錐化可改變數值孔徑、正歸化頻率與光傳播模態分布,此三項的變化有助於折射率作感測的能力增強。
在本論文中使用自組裝的電弧放電系統對多模光纖(core-400 μm 和cladding-430 μm )進行錐化拉伸,同時也在表面修飾球狀金奈米粒子。在兩種效應之下,隨著外界感測液體的折射率變化,對於光纖的光強度變化更加顯著,達到感測能力的雙重提升。錐形光纖的腰部半徑分別有300 μm與200 μm兩種,研究結果發現錐形光纖感測能力較均勻光纖佳,且對於較細的腰部半徑錐形光纖,其感測器能力較粗的腰部半徑錐形光纖為佳,此結果符合我們的預期。
A fiber biosensor modified by nano-gold particles is made according to the localized surface plasma resonance theorem. The nano-gold particles enhances the sensitivity of the sensor measuring the refractive index (RI) by absorbing and scattering the evanescent wave on the interface between the core and the liquid to be tested.
Different research teams have used different approaches to achieve the same goal. In this study, we pursue our goal by modification of the fiber with nano-gold particles. This fiber is either tapered or non-tapered in advance. Note that taper of the fiber may result in the variations of numerical aperture of the fiber, normalized frequency, and the path of propagating light.
In the practice of this work, we use an arc discharge system to pull and taper a multimode fiber (core: 400 μm and cladding: 430 μm, both in diameter) or simply remove the cladding. Afterwards, we modify the fiber with spherical nano-gold particles with a diameter of 15 nm. Consequently, when we measure refractive indices of different liquids with this tailored fiber, the light intensity variation with the refractive indices is enlarged.
When pull and taper of the abovementioned fiber yield diameters of 300 μm and 200 μm, the latter shows a better sensitivity that the former. Besides, they are both superior to the uniform fiber which is not tapered.
Keyword:nano-gold particle, refractive index, tapered fiber, evanescent wave and localized surface plasma resonance.
中文摘要…………………………………………………………………I
Abstract ………………………………………………………………II
目錄……………………………………………………………………III
圖表目錄 ………………………………………………………………VI

第一章 緒論……………………………………………………………1
1-1 研究背景……………………………………………………………1
1-1-1 光纖簡介…………………………………………………………1
1-1-2 光纖生物感測器…………………………………………………1
1-1-3 金奈米粒子簡介…………………………………………………2
1-1-4 電弧放電加工簡介………………………………………………2
1-2 研究動機與目的……………………………………………………3
1-3 本文簡介……………………………………………………………4

第二章 錐形光纖與金奈米表面電漿共振原理………………………5
2-1 光纖基本原理介紹…………………………………………………5
2-1-1 傳統光纖的基本構造……………………………………………5
2-1-2 光在光纖中傳播的原理…………………………………………6
2-1-3 光纖中的重要參數………………………………………………7
2-2 表面電漿共振原理…………………………………………………8
2-2-1 漸逝波 (Evanescent Wave)……………………………………8
2-2-2 Goos & Hanchen Shift…………………………………………9
2-2-3 表面電漿共振 (Surface Plasmon Resonance) ……………12
2-2-4 金屬奈米粒子吸收原理 ………………………………………18
2-3 錐形光纖
2-3-1 錐形光纖的數值孔徑 …………………………………………23
2-3-2 錐形光纖的傳輸原理 …………………………………………23

第三章 錐形光纖感測器製作與實驗方法……………………………26
3-1 引言 ………………………………………………………………26
3-2 自行組裝模組 ……………………………………………………26
3-2-1電弧放電控制系統組織架構……………………………………26
3-2-2感測系統儀器架設………………………………………………30
3-3 實驗流程 …………………………………………………………31

第四章 實驗結果與討論………………………………………………38
4-1 引言 ………………………………………………………………38
4-2 製作錐形光纖 ……………………………………………………38
4-2-1光纖錐化拉伸……………………………………………………38
4-2-2光纖端面研磨……………………………………………………40
4-3 修飾金奈米錐形光纖的光學特性 ………………………………41
4-4 修飾金奈米光纖錐化前後感測能力比較 ………………………42

第五章 結論與未來展望………………………………………………47
5-1 結論 ………………………………………………………………47
5-2 未來展望 …………………………………………………………48

參考文獻 ………………………………………………………………49

附錄1……………………………………………………………………52
參考文獻
[1]陳建興碩士論文, 金奈米粒子修飾光纖光柵感測器之特性與研究,國立中正大學物理研究所(2007)
[2]謝振傑, 光纖生物感測器, 物理雙月刊(廿八卷四期)2006 年8 月
[3]J.-P. CONZEN, J. BCRCK,* and H.-J. ACHE “Characterization of a Fiber-Optic Evanescent Wave Absorbance Sensor for Nonpolar Organic Compounds” APPLIED SPECTROSCOPY Vol 47,pp. 753-763 (1993).
[4]J.A. Creighton, D.G. J. Eadon, " Synthesis of copper metallic clusters using reverse micelles as microreactors," Chem. Soc. Faraday. Trans., Vol. 87, pp. 3881 (1991).
[5]Y.Y. Yu, S.S. Chanh, C.L. Lee, and C.R.C. Wang, " Gold Nanorods-Electrochemical Synthesis and Optical Properties," J. Phys. Chem., Vol. 101, pp. 6661-6664 (1997).
[6]J. Homola, S. S. Yee, and G. Gauglitz, " Surface plasmon resonance sensors: review,” Sensors and Actuator B: Chemical, Vol. 54, No. 1, pp. 3-15 (1999).
[7]Yi-Fan Li* , John W. Y. Lit, "Transmission properties of a multimode optical-fiber taper, " J. Opt. Soc. Am. A ,Vol. 2, No. 3,pp.462-468 (1985)
[8]Lai-Kwan Chaua,∗, Yi-Fang Lin b, Shu-Fang Chenga, Tsao-Jen Lin b,∗∗, "Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance," Sensors and Actuators B,113 pp.110-115(2006)
[9]Zhaobing Tian,1,* Michael Nix,2 and Scott S-H. Yam2, "Laser beam shaping using a single-mode fiber abrupt taper," OPTICS LETTERS ,Vol.34, No.3, pp.229-231(2009)
[10]Jacques Bures ,Rene´ Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A ,Vol.16, No.8, pp.1992-1996(1999)
[11]J.M. Senior, Optical Fiber Communications: Principles and Practice, Prentice/Hall International, pp. 32-34 (1985).
[12]F. Goos, H. Hänchen, Ann. Phys. 1, 333 (1947)
[13]M.N. Kronick, and W.A. Litlle, "A new immunoassay based
on fluorescence excitation by internal reflection spectroscopy," J.Immunol. Method, Vol. 8, pp. 235 (1975).
[14]R.H. Ritchie, " Plasma losses by fast electrons in thin films," Physical Review, Vol. 106, pp. 874 (1957).
[15]R.C. Jorgenson and S.S. Yee, " A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B, Vol. 12, pp. 213-220 (1993).
[16]H.P. Chiang, Y.C. Wang, P.T. Leung and W.S. Tse, " A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance, " Opt. Communications , Vol.188, pp. 283-289 (2001).
[17]S.R.J. Brueck, V.Diadihk, T.Jones, and W.Lenth, "Enganced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves," Appl. Phys. Lett., Vol. 46, No. 10, pp. 915 (1985).
[18]V.M Shalaev, and S.kawata, Nanophotonics With Surface Plasmons
[19]H.C. van de Hulst. Light Scattering By Small Particles. John Wiley & Sons, New York, 1957. (Paperback by Dover Publications, New York, 1981)
[20]C.F. Bohren and D.R. Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, New York, 1983.(Paperback by Wily Science Paperback Series, 1998)
[21]U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Ser. Mat. Sci. 25, (1995)
[22]http://archiv.tu-chemnitz.de/pub/2002/0074/index.html
[23]吳添銘碩士論文,金奈米粒子侷部表面電漿波共振在感測器之應用研究,雲林科技大學電子工程研究所(2007)
[24]MICHAEL D. DEGRANDPRE and LLOYD W. BURGESS*, "A Fiber-Optic FT-NIR Evanescent Field Absorbance Sensor," APPLIED SPECTROSCOPY, Vol.44, No2, pp.273-279(1990)
[25]ANNA GRAZIA MIGNANI,* RICCARDO FALCIAI, and LEONARDO CIACCHERI, "Evanescent Wave Absorption Spectroscopy by Means of Bi-tapered Multimode Optical Fibers, "APPLIED SPECTROSCOPY, Vol.52, No.4, pp546-551(1998)
[26]Shangping Guo and Sacharia Albin, "Transmission Property And Evanescent Wave Absorption of Cladded Multimode Fiber Tapers "OPTICS EXPRESS,Vol.11, No3,pp.215-223(2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top