|
[1]V. D. Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter, IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315–324, Mar. 2001. [2]J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC, IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959–1969, Dec. 1998. [3]P. Palmers and M. S. J. Steyaert, “A 10-bit 1.6-GS/s 27-mW current-steering D/A converter with 550-MHz 54-dB SFDR bandwidth in 130-nm CMOS, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 11, pp. 2870–2879, Nov. 2010. [4]C.-H. Lin, F. M. L. van der Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, and K. Bult, “A 12 bit 2.9 GS/s DAC with IM3 )60 dBc beyond 1 GHz in 65 nm CMOS, IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285–3293, Dec. 2009. [5]W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “A 12-bit 1.25-GS/s DAC in 90nm CMOS with )70 dB SFDR up to 500 MHz, IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2845–2856, Dec. 2011. [6]A. R. Bugeja and B.-S. Song, “A self-trimming 14-b 100-MS/s CMOS DAC, IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000. [7]M. P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC, IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1144–1147, Jul. 2001. [8]D.-L. Shen, Y.-C. Lai, and T.-C. Lee, “A 10-bit binary-weighted DAC with digital background LMS calibration, Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2007, pp. 352–355. [9]J.-H. Chi, S.-H. Chu, and T.-H. Tsai, “A 1.8-V 12-bit 250 MS/s 25-mW self-calibrated DAC, Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2010, pp. 222–225. [10]D.-H. Lee, Y.-H. Lin, and T.-H. Kuo, “Nyquist-rate current-steering digital-to-analog converters with random multiple data-weighted averaging technique and QN rotated walk switching scheme, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1264–1268, Nov. 2006. [11]K. L. Chan, J. Zhu, and I. Galton, “A 150 MS/s 14-bit segmented DEM DAC with greater than 83 dB of SFDR across the Nyquist band, Proc. Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 200–201. [12]D.-H. Lee, T.-H. Kuo, and K.-L. Wen, “Low-cost 14-bit current-steering DAC with a randomized thermometer-coding method, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 137–141, Feb. 2009. [13]W.-T. Lin, and T.-H. Kuo, “A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection, IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 444–453, Feb. 2012. [14]W.-T. Lin and T.-H. Kuo, “A 12b 1.6GS/s 40mW DAC with )70dB SFDR over Entire Nyquist Bandwidth, IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 474–475. [15]A. R. Bugeja, and B.-S. Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC, IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000. [16]Q. Huang, A. Francese, C. Martelli, and J. Nielsen, “A 200MS/s 14b 97mW DAC in 0.18μm CMOS, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004, pp. 364–532. [17]AD9772: 14-Bit 150 MSPS TxDAC with 2x Interpolation Filter. Analog Device Inc., 1999. [18]US Patent 6,720,898 [19]M. J. M. Pelgrom, C. J. Duinmaijer, and A. P. G. Welbers, “Matching Properties of MOS Transistors, IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433–1440, Oct. 1989. [20]I. Galton, “Why Dynamic-Element-Matching DACs Work, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 2, pp. 69–74, Feb. 2010. [21]M.-J. Choe, K.-H. Baek, and M. Teshome, “A 1.6-GS/s 12-bit Return-to-Zero GaAs RF DAC for Multiple Nyquist Operation, IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2456–2468, Dec. 2005. [22]A. Van den Bosch, M. S. J. Steyaert, and W. Sansen, “Solving static and dynamic performance limitations for high-speed D/A converters, Analog Circuit Design: Scalable Analog Circuit Design, High-Speed D/A Converters, RF Power Amplifiers. Norwell, MA: Kluwer, 2002, pp. 189–210. [23]T. Chen, P. Geens, G. van der Plas, W. Dehaene, and G. Gielen, “A 14-bit 130-MHz CMOS current-steering DAC with adjustable INL, Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2004, pp. 167–170. [24]M. Clara, W. Klatzer, B. Seger, A. D. Giandomenico, and L. Gori, “A 1.5 V 200MS/s 13 b 25 mWDAC with randomized nested background calibration in 0.13 mCMOS, IEEE Solid-State Circuits Conf.Dig. Tech. Papers, 2007, pp. 250–251. [25]G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert and G. G. E. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC, IEEE J. Solid-State Circuits, vol. 34, no.12, pp. 1708-1718, Dec. 1999. [26]D. H. Lee, Y. H. Lin, and T. H. Kuo, “Nyquist-rate current steering digital-to-analog converters with random multiple data-weighted average technique and QN rotated walk switching scheme, IEEE Trans. Circuit Syst. II, vol. 53, no. 11, pp. 1264-1268, Nov. 2006. [27]Tao Chen and Georges G. E. Gielen, “The Analysis and Improvement of a Current-Steering DACs Dynamic SFDR—I: The Cell-Dependent Delay Differences, IEEE Trans Circuit Syst.—I: REGULAR PAPERS, vol. 53, no. 1, pp. 3-15, JANUARY 2006 [28]Fu-Sheng Hsu and Tai-Haur Kuo, “A 14-bit 200 MHz DAC with Minimum Current Switching and Dynamic Element Matching for Oversampling and Nyquist Dual-Mode, Master Thesis, 2010 [29]Wei-Cheng Hung and Tai-Haur Kuo, “A 12-bit 2GS/s Current-Steering DAC in 0.07 mm2, Master Thesis, 2013 [30]Nicola Ghittori, Andrea Vigna, Piero Malcovati, Stefano D’Amico, and Andrea Baschirotto, “1.2-V Low-Power Multi-Mode DAC+Filter Blocks for Reconfigurable (WLAN/UMTS, WLAN/Bluetooth) Transmitters, IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 1970-1982, Sep. 2006 [31]Gil Engel, Shawn Kuo, Steve Rose, “A 14b 3/6GHz Current-Steering RF DAC in 0.18μm CMOS with 66dB ACLR at 2.9GHz, IEEE ISSCC Tech. Papers, pp. 458–461, Feb. 2012 [32]Frank Van de Sande, Nico Lugil, Filip Demarsin, Zeger Hendrix, Alvin Andries, Peter Brandt, William Anklam, Jeffery S. Patterson, Brian Miller, Michael Rytting, Mike Whaley, Bob Jewett, Jacky Liu, Jake Wegman, and Ken Poulton, “A 7.2 GSa/s, 14 Bit or 12 GSa/s, 12 Bit Signal Generator on a Chip in a 165 GHz Ft BiCMOS Process, IEEE J. Solid-State Circuits, vol. 47 , no. 4, pp. 1003-1012, April 2012 [33]Stanley Yuan-Shih Chen, Nam-Seog Kim, and Jan Rabaey, “A 10b 600MS/s Multi-mode CMOS DAC for Multiple Nyquist Zone Operation, IEEE VLSIC, 2011 [34]Alex R. Bugeja, Bang-Sup Song, Patrick L. Rakers, and Steven F. Gillig, “A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance, IEEE J. Solid-State Circuits, vol. 34 , no. 12, pp. 1719-1732, Dec. 1999 [35]Yongjian Tang, Joost Briaire, Kostas Doris, Robert van Veldhoven, Pieter C. W. van Beek,Hans Johannes A. Hegt, and Arthur H. M. van Roermund, “A 14 bit 200 MS/s DAC With SFDR )78 dBc, IM3 (-83 dBc and NSD ( -163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping, IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1371-1381, June 2011 [36]Andrew C. Y. Lin, David K. Su, Richard K. Hester, and Bruce A. Wooley, “A CMOS Oversampled DAC With Multi-Bit Semi-Digital Filtering and Boosted Subcarrier SNR for ADSL Central Office Modems, IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 868-875, April 2006 [37]Dongwon Seo, and Gene H. McAllister, “A Low-Spurious Low-Power 12-bit 160-MS/s DAC in 90-nm CMOS for Baseband Wireless Transmitter, IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 486-495, March 2007 [38]Kyehyung Lee, Qingdong Meng, Tetsuro Sugimoto, Koichi Hamashita, Kaoru Takasuka, Seiji Takeuchi, and Un-Ku Moon, “A 0.8 V, 2.6 mW, 88 dB Dual-Channel Audio Delta-Sigma D/A Converter With Headphone Driver, IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 916-927, March 2009 [39]Bert Oyama, Daniel Ching, Khanh Thai, Augusto Gutierrez-Aitken, and Vipul J. Patel, “InP HBT/Si CMOS-Based 13-b 1.33-Gsps Digital-to-Analog Converter With )70-dB SFDR, IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2265-2272, Oct. 2013 [40]Brian Brandt, Dan McMahill, Miaochen Wu1, Paul Kalthoff, Ajay Kuckreja, and Geir Ostrem,“A 14b 4.6GS/s RF DAC in 0.18μm CMOS for Cable Head-End Systems, IEEE ISSCC, pp. 390-392, Feb. 2014
|