跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏源宏
研究生(外文):Yuang-Hung Wei
論文名稱:具溫度感測元件之雙模同步互補式金氧半導體切換式降壓型穩壓器設計
論文名稱(外文):A Dual –Mode Operation Synchronous CMOS Switching Buck Regulator with Temperature Sensor
指導教授:葉美玲葉美玲引用關係
指導教授(外文):Mei-Ling Yeh
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:94
中文關鍵詞:切換式降壓型穩壓器雙模同步具溫度感測元件
外文關鍵詞:Switching Buck RegulatorA Dual –Mode Operation Synchronouswith Temperature Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,由於智慧型觸控手機、GPS衛星導航機、行車監視器、高畫質數位相機以及LED照明…等等相關電子產品紛紛出籠,使得系統端的產品開發廠商為了增加產品功能性,大量的使用微處理器與數位訊號處理器以及多功能模組系統來滿足產品需求,因此擁有屬於各自功能模組的電源需求增加,使系統的控制上以及系統設計上難度也增加。
本論文提出以脈衝寬度調變與脈衝頻率調變的機制來控制並且管理我們的電源穩壓器,以有效控制電流流至輸出端的時機,並工作於重載期間,感測穩壓器的溫度。當穩壓器處於溫度T1至溫度T2期間,因熱而造成的功率損耗,此時,降低高切換次數的功率電晶體之切換頻率,以降低切換功率損失,並於合理的頻率,來控制因頻率下降而輸出漣波過大的問題。而此時穩壓器也關閉閒置的電路,以確保無謂的功率損耗。另外,為保護晶片在啟動時,不致因過大電流而燒毀,也有緩啟動電路來限制啟動電流,同時,於溫度高於T1時,關閉緩起動電路,防止輸出電壓產生擾動。當溫度大於T2時,送出訊號啟動風扇機制來降溫。
本論文穩壓器工作電壓範圍為3V~5V,穩壓器輸出電壓為1.8V,穩壓器最大轉換效率為97.3%,晶片採用台灣積體電路有限公司所生產的0.35μm為2P4M CMOS 製程技術設計。

In recent years, the smart touch mobile phones, Global Positioning System(GPS)satellite navigation unit, driving recorder, high definition(HD)digital camera, Light-Emitting Diode(LED)lighting, and related electronic products have emerged. It makes the system end of product development companies extensively use microprocessors, digital signal processing(DSP), and multi-module systems to increase product functionality and meet product demand. Hence, it increases demand for the power of their respective function module. The control of system and system design also increase the difficulty.

In this thesis, we use the mechanism of pulse width modulation (PWM)and pulse frequency modulation(PFM)to control and manage our power regulator which can effectively control the current flow to the output at the right time. When working in heavy load periods, it can sense the temperature of the regulator. When the regulator is operating at temperature T1 to temperature T2, heat is the result of power lost. At this point, the system will reduce the switching frequency of power transistors to reduce switching power consumption and remain at a reasonable frequency to control the problem that low frequency causes higher ripple voltage on the output. In the mean time, the regulator also shuts down the idle circuits to ensure the unnecessary power loss. In addition, to protect the chip at boot time from too large current and being burnt down, the soft start circuit is designed to limit start up current. When the temperature is higher than T1, the soft start circuit is turn off to prevent the output voltage from disturbances. When the temperature is greater than T2, send a signal to start the cooling fan system.

In this thesis, the operation voltage of regulator is from 3V to 5V and the output voltage is 1.8V, and the maximum efficiency is 97.3%. The chip is designed with TSMC 0.35um 2P4M polycide CMOS process.

目錄
頁次
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 背景簡介 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 切換式穩壓器概論 4
2.1 基本線性穩壓器介紹 4
2.2 基本切換式電感穩壓器 5
2.3 基本切換式電容穩壓器 8
2.4 切換式降壓型穩壓器連續與不連續導通模式 9
分析 9
2.5 升壓型穩壓器 13
2.6 升降壓型穩壓器 15
2.7 切換式穩壓器之規格 16
2.8 穩壓器系統迴路分析 20
2.9 溫度感測器之種類與分析 26
第三章 切換式降壓型穩壓器之電路設計 29
3.1 系統架構 29
3.2 系統之偏壓電路 31
3.3 誤差放大器 33
3.4 折疊疊接運算放大器 35
3.5 帶差參考電路 37
3.6 電感電流之偵測電路 40
3.7 S–R正反器 41
3.8 比較器電路 42
3.9 鋸齒波產生器及降頻調整 45
3.10 緩啟動之電路 50
3.11 PWM/PFM之調變電路 52
3.12 PWM偵測電路與模式選擇電路 53
3.13 PWM轉切PFM偵測電路 54
3.14 停滯時間(Dead–Time)緩衝驅動電路 57
3.15 零電流之偵測電路 60
3.16 功率電晶體電路 62
3.17 溫度感測電路 63
第四章 穩壓器之模擬結果與晶片佈局 68
4.1 整體電路模擬 68
4.2 線性穩壓測試 70
4.3 負載穩壓測試 74
4.4 負載穩壓測試 78
4.5 降壓型穩壓器效能表 81
4.6 電路佈局考量 83
第五章 結論 86
5.1 量測之考量 86
5.2 溫度感測器之量測 88
5.3 總結與未來研究方向 89
參考文獻 92

[1]Zi-Yu Zeng, “A Low Dropout Linear Regulator with High Power Supply Rejection, ” NCKU, Master Thesis, 2008.
[2]Richard Nowakowski and Brian King, “為您的DC/DC轉換器選擇最佳開關頻率,” 德州儀器電子工程師專輯,2007年8月號 .
[3]M﹒ Brown, “What Everyone Should Know About Switching Power Supplies,” Application Note, On Semiconductor Inc., 1999.
[4]Daniel W. Hart, Introduction to power electronics, 3nd Edition, Prentice Hall, 1997.
[5]N. Monan, T.M. Undeland and W. P. Robbins, Power Electronics Converters Applicatons and Design, 2nd Edition, New York, USA, 1995.
[6]Jiann-jong Chen, Smart Power Integrated Circuit Design, 2005.
[7]C. Y. Huang, ”A Improved Frequency Compensation Technique for Low Dropout Regulator,” Master thesis. National Tsing Hue University, 2003.
[8]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Edition, Norwell, MA:Kluwer, 2001.
[9]Kwok-Tong Chau, “A Soft Tool for Learning the Dynamic Behavior of Power Electronics Circuits,” IEEE Transcations on Education, vol. 39, no.1, pp. 50-55, FEB. 1996.
[10]R. Tymerski, V. Vorperian, Fred C. Y. Lee and W. T. Baumann, “Nonlinear Modeling of the PWM Switch,” IEEE Transcations on Power Electronics, vol. 4, no. 2, pp. 225-233, April 1989.
[11]R. D. Middlebrook, “Small-Signal Modeling of Pulse-Width Modulated Switching-Mode Power Converters,” Proceedings of the IEEE, vol. 76, no 4, pp. 343-354, April 1988.
[12]S. K. Mazumder, Nonlinear Analysis and Control of Standaline, Parallel DC-DC, and Parallel Multi-Phase PWM Converters, Blacksburge, Virginia, July 30, 2001.
[13]謝廣文, 農業自動化叢書第十二輯:機電整合,第二章 感應器原理
, 國立台灣大學生物產業機電工程學系, Dec., 2003.
[14]B. Razavi, Design of Analog CMOS Integrated Circuit, Boston MA:McGraw-Hill, 2001.
[15]David A. Johns and Ken Martin, Analog Interated Circuit Design, John Wiley & Sons, 1997.
[16]Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University, 2002.
[17]Gabriel A. Rincon-Mora, Voltage References, John Wiley & Sons, 2002.
[18]H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, “A CMOS bandgap reference circuit with sub-1-V operation,” IEEE Journal of Solid-State Circuit, vol. 34, no. 5, pp. 670-674, 1999.
[19]H. P. Forghani-zadeh, G. A. Rincon-Mora, “Current-Sensing Techniques for DC-DC Converters,” Midwest Symposium on Circuits and Systems, vol. 2, pp.II-577-II-580, Aug. 2002.
[20]John P. Uyemura, Physical Design of CMOS Integrated Circuits Using L-EDIT. Gau Lih, 1998.
[21]B. Murari, F. Bertotti and G. A. Vignola(Eds.), Smart Power ICs, 2nd Edition, New York:Spring-Verlag, 2002.
[22]盧明智, 線性IC積木式實驗與專題製作. 全華, 2000.
[23]Jan M. Rabaey, Digital Integrated Circuits: A Design Perspective, New Jersey:Prentice-Hall, 1996.
[24]S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, Third Edition, McGRAM-HILL, 2003.
[25]Changsik Yoo, “A CMOS buffer without short-circuit power consumption,” IEEE Transcations on, Circuits and System II: Analog and Digital Signal Processing, vol. 47, no. 9, pp. 935-937, Sept. 2000.
[26]D. Ma, W. H. Ki, C. Y. Tsui, “A Pseudo-CCM/DCM SIMO Switching Converter with Freewheel Switching,” IEEE Journal of Solid-State Circuits, Issue 6, vol. 38, pp. 1007-1014, June 2003.
[27]Kai-Siang Johong, ”A High-Efficiency Current-Mode Switching Buck Regulator for Portable Application,” Master thesis. National Cheng Kung University, 2008.
[28]Tang-Yu Huang, ”A High-Efficiency Dual-Mode Buck Converter,” Master thesis. National Taiwan Ocean University, 2007.
[29]Tsung-Yin Yu, ”A High-Efficiency Synchronous CMOS Switching Regulator with PWM/PFM-Mode Operation,” Master thesis. National Chiao Tung University, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top