[1]Saiz, E., Goldman, M., Gomez, V. J. M., Tomsia, A. P., Marshal, G. W. and Marshall, S. J., "In vitro behavior of silicate glass coatings on Ti6Al4V," Biomaterials, 23, 3749-3756 (2002).
[2]宋光鈴,鎂合金腐蝕與防護,北京:化學工業出版社,第103-107頁(2006)。
[3]柴躍生、孫鋼、梁愛生,鎂及鎂合金生產知識問答,北京:冶金工業出版社,第9頁(2005)。
[4]江芮君,以微弧氧化法在ZK60鎂合金製備含鈣磷之氧化層,碩士論文,龍華科技大學化工與材料工程系,桃園(2015)。[5]Avedesian, M. M. and Hugh, B., ASM Specialty Handbook:Magnesium and Magnesium Alloys, United States: ASM International, 798 (1999).
[6]薛俊峰,鎂合金防腐蝕技術,北京:化學工業出版社,第38-47頁(2010)。
[7]程濤、張春霖、婁朝暉,現代臨床生物材料,鄭州:鄭州大學出版社,第248頁(2009)。
[8]鄭玉峰、李莉,生物醫用材料學,西安:西北工業大學出版社,第561頁(2009)。
[9]Witte, F., Hort, N. and Vogt, C., "Degradable biomaterials based on magnesium corrosion," Curr. Opin. Solid State Mater. Sci., 12, 63-72 (2008).
[10]Hort, N., Huang, Y. and Fechner, D., "Magnesium Alloys as Implant Materials-Principles of Property Design for Mg-RE Alloys," Acta Biomaterialia, 6, 1714-1725 (2010).
[11]杜翠玲,ZK60鎂合金微弧氧化生物陶瓷膜的製備與性能表徵,碩士論文,江蘇科技大學材料學系,江蘇(2013)。
[12]包崇云、張興棟,「磷酸鈣生物材料固有骨誘導性的研究現狀與展望」,生物醫學工程學雜誌,第二十三卷,第二期,第442-445頁(2006)。
[13]襲迎祥、王迎軍、鄭岳華,「可降解生物醫用材料的降解機理」,矽酸鹽通報,第三期,第40-44頁(2000)。
[14]Mueller, P. P., May, T., Perz, A., Hauser, H. and Peuster, M., "Control of smooth muscle cell proliferation by ferrous iron," Biomaterialia, 27, 2193-2200 (2006).
[15]Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P. and Schnakenburg, C., "Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta," Biomaterials, 27, 4955-4962 (2006).
[16]陸紅梅,鋅基生物醫用可降解材料的組織與性能研究,碩士論文,哈爾濱工程大學,哈爾濱(2008)。
[17]崔春翔、趙立臣,鎂合金生物材料製備及表面處理,北京:科學出版社,第17-27頁(2013)。
[18]Staiger, M. P., Pietak, A. M. and Huadmai, J., "Magnesium and its alloys as orthopedic biomaterials: a review," Biomaterials, 27, 1728-1734 (2006).
[19]Song, G. L., "Control of biodegradation of biocompatible magnesium alloys," Corrosion Science, 49, 1696-1701 (2007).
[20]劉振東、范清宇,「應力遮擋效應-尋找丟失的鑰匙」,中華創傷骨科雜誌,第四卷,第一期,第62-64頁(2002)。
[21]邵美貞、羅德誠,鎂的基礎與臨床,成都:四川科學技術出版社,第194頁(1996)。
[22]Witte, F., Kaese, V. and Haferkamp, H., "In vivo corrosion of four magnesium alloys and the associated bone response," Biomaterials, 26, 3557-3563 (2005).
[23]Li, Z. J., Gu, X. A. and Lou, S. Q., "The development of binary Mg-Ca alloys for use as biodegradable materials within bone," Biomaterials, 29, 1329-1344 (2008).
[24]陶海榮、張岩、何耀華,「鎂鋅合金在動物體內降解及其相容性」,中國組織工程研究與臨床康復,第十三卷,第十二期,第2232-2236頁(2009)。
[25]吳丹、楊湘杰,「鎂合金表面化學轉化處理進展」,材料保護,第四十卷,第十二期,第53-56頁(2007)。
[26]金和喜、王日初、彭超群、馮艷、石凱、陳彬,「鎂合金表面化學轉化膜研究進展」,中國有色金屬學報,第二十一卷,第九期,第2049-2059頁(2011)。
[27]Umehara, H., Takaya, M. and Terauchi, S., "Chrome-free surface treatments for magnesium alloy," Surface & coatings Technology, 169, 666-669 (2003).
[28]Kwo, Z. C. and Teng, S. S., "Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution," Materials chemistry and Physic, 80, 191-200 (2003).
[29]周游、姚穎悟、吳堅扎西、劉偉星,「鎂合金化學轉化膜的研究進展」,電鍍與精飾,第三十五卷,第五期,第15-18頁(2013)。
[30]Song, G. L., Corrosion Prevention of Magnesium Alloys, Amsterdam, Cambridge: Woodhead, 133-162 (2013).
[31]趙磊、鍾輝、龔國輝,「镁合金的激光表面处理技术」,輕合金加工技術,第四十卷,第一期,第18-21頁(2012)。
[32]Li, M., Han, B., Wang, Y., Song, L. and Guo, L., "Investigation on laser cladding high-hardness nano-ceramic coating assisted by ultrasonic vibration processing," Optik-International Journal for Light and Electron Optics, 127, 4596-4600 (2016).
[33]Toyserkani, E., Khajepour, A. and Corbin, S., Laser Cladding, New York: CRC Press, 1-2 (2005).
[34]王英、曹祖賓、孫微微、張繁軍,「緩蝕劑的分類和發展方向」,全面腐蝕控制,第二十三卷,第二期,第24-26頁(2009)。
[35]鄒雲、王洋洋、劉影、王桂香、張曉紅,「鎂合金緩蝕劑的研究進展」,電鍍與環保,第三十四卷,第四期,第1-4頁(2014)。
[36]王保成,材料腐蝕與保護,北京:北京大學出版社,第2、206-208頁(2012)。
[37]倪維良、邵旭東、郁飛、王留方、王李軍、朱亞君、譚偉民,「鎂合金防腐表面處理與塗層技術研究進展」,塗料工業,第四十二卷,第七期,第75-79頁(2012)。
[38]曾霞文、譚彥顯、陳超、蔡素玲,「氣相沉積技術在提高塑料模具壽命中的應用」,湖南工業職業技術學院學報,第八卷,第六期,第11-13頁(2008)。
[39]楊雲凱,「物理氣相沉積(PVD)介紹」,國家奈米元件實驗室奈米通訊,第二十二卷,第四期,第33-35頁(2015)。
[40]Keller, F., Hunter, M. S. and Robinson, D. L., "Structural Features of Oxide Coatings on Aluminum," Journal of The Electrochemical Society, 100, 411-419 (1953).
[41]Masuda, H. and Fukuda, K., "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 1466-1468 (1995).
[42]Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y. and Aucouturier, M., "Structure and physic chemistry of anodic oxide films on titanium and TA6V alloy," Surface and Interface Analysis, 27, 629-637 (1999).
[43]熊楚強、王月,電化學,台北市:文京圖書有限公司,第318-321頁(1996)。
[44]馮克林,「微電弧電漿電化學技術,輕金屬專題」,工業材料雜誌,第二一一期,第104-109頁(2004)。[45]Markova, G. V., "Internal friction during martensitic transformation in high manganese Mn–Cu alloys," Materials Science and Engineering, 370, 473-476 (2004).
[46]Yerokhin, A. L., Snizhko, L. O., Gurevina, N. L., Leyland, A., Pilkington, A. and Matthews, A., "Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy," Surface and Coatings Technology, 178, 779-783 (2004).
[47]Gu, W. C., Lv, G. H., Chen, H., Chen, G. L., Feng, W. R. and Yang, S. Z., " Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy," Materials Science and Engineering, 447, 158-162 (2007).
[48]Jaspard-Mécuson, F., Czerwiec, T., Henrion, G., Belmonte, T., Dujardin, L., Viola, A. and Beauvir, J., "Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process," Surface & Coatings Technology, 201, 8677-8682 (2007).
[49]Wu, H., Wang, J., Long, B., Long, B., Jin, Z., Naidan, W., Yu, F. and Bi, D., "Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy," Applied Surface Science, 252, 1545-1552 (2005).
[50]Jiangsu University of Science and Technology. C.N. Patent No. 105112981,(2 December, 2015).
[51]薛文斌、鄧志威、來永春,「鋁合金微弧氧化陶瓷膜的形成過程及其特性」,電鍍與精飾,第四期,第3-6頁(1996)。
[52]鄧志威、薛文斌、汪新福,「鋁合金表面微弧氧化技術」,材料保護,第二九期,第15-16頁(1996)。
[53]鐘時俊、Oleg Demine、翁榮洲,「微電弧氧化表面處理原理與應用」,工業材料雜誌,第一九四期,第176-179頁(2003)。
[54]侯亞麗、劉忠德,「微弧氧化技術的研究現況」,電鍍與精飾,第二七期,第24-28頁(2008)。
[55]Peter, P. and Dimiter, D., "Electron beam alloying of aluminum alloys," Vacuum, 44, 857-861 (1993).
[56]薛文斌、鄧志威、來永春、陳如意、張通和,「有色金屬表面微弧氧化處理技術評述」,金屬熱處理,第一期,第1-3頁(2000)。
[57]鮮祺振、劉國橋,金屬腐蝕及其控制,台北:財團法人徐氏基金會,第1頁(1995)。
[58]何業東、齊慧濱,材料腐蝕與防護概論,北京:機械工業出版社,第3頁(2005)。
[59]周偉萍,利用微弧氧化技術在鎂合金表面製備黑色氧化膜之研究,碩士論文,大同大學材料工程研究所,台北(2012)。[60]林佩樺,雙層鍍層耐蝕性之研究,碩士論文,逢甲大學材料科學與工程學系,台中(2014)。[61]Destefani, J. D., "Properties and Selection: Nonferrous Alloys and Special-Purpose Materials," ASM Handbook, 2, 1770 (1992).
[62]Lin, X., Tan, L. L., Zhang, Q., Yang, K., Hu, Z. Q., Qiu, J. H. and Cai, Y., "The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating," Acta Biomaterialia, 9, 8631-8642 (2013).
[63]Zhao, L., Cui, C., Wang, Q. and Bu, S., "Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications," Corrosion Science, 52, 2228-2234 (2010).
[64]Mu, W. and Han, Y., "Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation," Surface and Coatings Technology, 202, 4278-4284 (2008).
[65]Su, P., Wu, X., Guo, Y. and Jiang, Z., "Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60 Mg alloy," Journal of Alloys and Compounds, 475, 773-777 (2009).
[66]Mao, L., Yuan, G., Niu, J., Zong, Y. and Ding, W., "In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy by hydrofluoric acid treatment," Materials Science and Engineering: C, 33, 242-250 (2013).
[67]Hussein, R. O., Zhang, P., Nie, X., Xia, Y. and Northwood, D. O., "The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62," Surface and Coatings Technology, 206, 1990-1997 (2011).
[68]Sankara Narayanan, T.S.N., Park, I. S. and Lee, M. H., "Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges," Progress in Materials Science, 60, 1-71 (2014).
[69]Stojadinović, S., Vasilić, R., Radić-Perić, J. and Perić, M., "Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride," Surface & Coatings Technology, 273, 1-11 (2015).
[70]Wang, L., Chen, L., Yan, Z., Wang, H. and Peng, J., "Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy," Journal of Alloys and Compounds, 480, 469-474 (2009).
[71]Bico, J., Tordeux, C. and Quéré, D., "Rough Wetting," Europhysics Letters, 55, 214-220 (2001).
[72]Van Honschoten, J. W., Brunets, N. and Tas, N. R., "Capillarity at the nanoscale," Chemical Society Reviews, 39, 1096-1114 (2010).