跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張怡文
研究生(外文):YI-WEN CHANG
論文名稱:週期載重作用下彈性孔洞的動態反應
論文名稱(外文):Dynamical Growth of Void in a Neo-Hookean Sphere under a periodic load
指導教授:李顯智李顯智引用關係
指導教授(外文):H.C.Lei
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:材料強度衰減孔洞擴張橡膠材料
外文關鍵詞:void growthRubberstrength degradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討neo-Hookean 圓球孔洞運動方程,分析橡膠材料中孔洞的動態擴張。neo-Hookean圓球孔洞在自由振動下的自然頻率並非固定值,隨模型所承受之初始條件改變而改變,反映出其非線性材料之特性,且厚壁圓球之非線性特性又較薄壁圓球明顯。在不同孔洞大小下,施加不同頻率的外力,其材料孔洞會有共振及不穩定擴張,此力學行為可能造成材料模型局部分子結構破壞導致整體材料衰減。本文亦研究週期外力對圓球模型的影響,並討論共振下其動態放大係數的變化。
This thesis studies the equation of motion of a rubber ball and the rubber ball dynamical behavior of a void in the ball. The natural frequency of rubber ball is not a fixed-value, it may be changed by assigning different initial conditions. This phenomenon reveals the character of non-linear material. The nonlinear effect on the ball with a smaller void is more obvious then that of the bigger one. The dynamical behavior of the void will change when loadings with different frequencies or speeds are applied to the surface of the rubber ball. We will focus on the unstable growth and the resonance of the void under periodic loads since such kind of growth shall cause strength degradation to the rubbers. This thesis also investigates the dynamical magnification factor for the ball.
第一章 緒論 1
第二章 基礎理論 3
2.1 推導neo-Hookean運動方程式 3
2.2 圓球邊界影響與微小孔洞影響 7
第三章 誤差來源分析 8
3.1 各種計算方法產生的誤差 8
3.2 時間數據擷取長度不同的誤差 14
第四章 自然頻率分析 18
4.1 自然頻率 18
第五章 強迫振動與共振頻率 27
5.1 自然頻率與共振頻率 27
5.2 週期外力與共振頻率相差 34
5.3 週期外力與共振頻率 36
5.4 動態放大係數 40
第六章 結論與建議 50
6.1 結論 50
6.2 建議 52
第七章 文獻回顧 53
1. F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371.
2. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970.
3. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15.
4. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490.
5. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992) 571-592.
6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53.
7. C.O.Horgan and D.A.Polignone, Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485.
8. C.Fong, Cavitation criterion for rubber materials: a review of void-growth models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
9. J. Sivaloganathan and S.J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J. of Elasticity, 67(2002)25-49.
10. E. Bayraktar, et. al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatique Fract. Engrg. Mater. Struct., 31(2008)184-196.
11. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and growth in solids: A self-consistent statistical theory. J. Mech. Phys. Solids, 56(2008)336-359.
12. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
13. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
14. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
15 F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226.
16. C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263.
17 S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914
18 S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401
19. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
20. J.N. Johnson, Dynamic facture and spallation in ductile solids. J. Appl. Phys., 52(1981)2812-2825.
21. R. Cortes, The growth of microvoids under intense dynamic loading. Int. J. Solids Struct. 29(1992)1339-1350.
22. R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses. Int. J. Solids Struct. 29(1992)1637-1645.
23. F.L. Addessio, J.N. Johnson and P.J. Maudlin, The effect of void growth on Taylor cylinder impact experiments. J. Appl. Phys., 73(1993)7288-7297.
24. Z.P. Wang, Growth of voids in porous ductile materials at high strain rate. J. Appl. Phys., 76(1994)1535-1542.
25. J. Zheng, Y.L. Bai and Z.P. Wang, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials. J. Phys. IV France Colloq. C8 (DYMAT 94) 4(1994)765-770.
26. W. Tong and G. Ravichandran, Inertial effects on void growth in porous viscoplastic materials. Trans. ASME: J. Appl. Mech., 62(1995)633-639.
27. X.Y. Wu, K.T. Ramesh and T.W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids, 51(2003)1-26.
28. M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973.
29. X Yuan, Z. Zhu and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech. (English Edition), 26(2005)973-981.
30. X Yuan, Z. Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech., 41(2006)294-303.
31. X.G. Yuan and H.W. Zhang, Effects of constitutive parameters and dynamic tensile loads on radially periodic oscillation of micro-void centered at incompressible hyperelastic spheres. CMES, 40(2009)201-224.
32. 李顯智,橡膠材料中孔洞動態擴張的數值計算,國科會計劃(NSC98-2221-E-008-102)。執行期間:九十八年八月至九十九年七月。
33. 李顯智,動態荷重交互作用下橡膠材料孔洞擴張數值計算,國科會計劃(NSC 99-2221-E-008-043) 。執行期間:九十九年八月至一百年七月。
34. T.J. Paulson, et. al., Shaking table study of base isolation for masonary buildings. J. Struct. Eng., 117(1991)3315-3336.
35. A.D. Luca, et. al., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Eng. Struct. Dyn., 30(2001)1125-1145.
36. J.F. Kang and Y.Q. Jiang, Improvement of cracking-resistance and flexural behavior of cement-based materials by addition of rubber particles. J. Wuhan Univ. Tech.—Mater.Sci. Edition, 23(2008)579-583.
37. G. Skripkiunas, et. al., Deformation properties of concrete with rubber waste additives.Mater. Sci.—Medziagotyra, 13(2007)219-223.
38.張惠文,砂土中減振模型樁之動態性質,國科會計劃(NSC96-2221-E008-059-MY3)。執行期間:九十八年八月至九十九年七月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊