跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信安
研究生(外文):Hsin-AnChen
論文名稱:電漿介電質放電技術應用於三角翼空氣動力特性之研究
論文名稱(外文):Study of the Effects of Dielectric Barrier Discharge Plasma Actuators on the Aerodynamics of a Delta Wing
指導教授:溫志湧
指導教授(外文):Chih-Yung Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:67
中文關鍵詞:電漿致動器離子風介電質放電三角翼渦流潰散升力係數翻轉力矩係數
外文關鍵詞:Roll Moment CoefficientLift CoefficientDelta WingVortex BreakdownDielectric Barrier DischargeIonic WindPlasma Actuator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
  電漿致動器主要作用原理是在飛行體表面通以高壓電場解離鄰近氣體形成電漿,藉由電場誘導產生的離子風(Ionic wind)來改變邊界層速度分佈。因應不同載體和需求,改變其空氣動力特性,例如延遲氣流分離(Delay flow separation)、降低壓力阻力(Pressure drag)等。電漿致動器根據其構造不同可大略分為兩大類:光暈放電(Corona discharge)以及介電質放電(Dielectric barrier discharge) 。
  本研究採用介電質放電,探討比較三角翼在不同位置擺設致動器,於低雷諾數及不同攻角時的空氣動力特性;研究中使用兩片銅箔作為電極,聚醯亞胺薄膜(Kapton film)作為介電質,並使用玻璃皮托管來測量誘導產生的離子風在不同位置的速度分佈。實驗在低速風洞中進行,以力平衡儀進行氣動力量測,同時藉視流觀察三角翼左右兩側渦流大小的改變;實驗結果發現,電漿致動器有效地改變翼?渦流(Leading edge vortex)的結構,致動器擺放位置另一側的渦流潰散(Vortex breakdown)現象明顯延後,因而造成升力及翻轉力矩係數的有效提升。另外,致動器放置在三角翼前段能夠較有效提升升力及翻轉力矩係數,在雷諾數75,000以及高攻角的狀態之下,致動器的影響效果會比較高雷諾數(Re=100,000、125,000)和低攻角的情況來得明顯。

  The working principle of plasma actuators is to apply a high voltage electric field to ionize the air around the surface of electrodes attached to an aerial vehicle. Ions produced at the electrode drift from the injection electrode to the collecting one under the effect of electric field. These ions exchange momentum with the neutral fluid particles and induce fluid movement, so called electric ionic wind. Its objective is to accelerate the airflow tangentially and very close to the wall, in order to modify the airflow profile inside the boundary layer and change the aerodynamic characteristics of the aerial vehicle, for example, delaying the flow separation, reducing the vehicle drag…etc. Plasma actuators can be categorized as corona discharge and dielectric barrier discharge (DBD) types.
  This research focuses on the application of the dielectric barrier discharge actuators on a delta wing. The effects of the DBD actuators on the aerodynamics of a delta wing at different angles of attack and Reynolds numbers are investigated. The actuator is composed of two copper strips separated by a dielectric Kapton film. The ionic wind velocity profiles at different positions from the delta wing edge are measured by a glass pitot tube. The experiments are conducted in a low speed wind tunnel. The force balance is used to measure the aerodynamic force, and the smoke wire technique is adopted to visualize the leading edge vortices of the delta wing. The results show that the plasma actuator when put on one side has a significant effect on the leading edge vortex structure of the other side and delays its breakdown, which enhance the lift and roll moment accordingly. The actuators are more effective in the fore positions than in the aft ones. Finally, the actuators show the largest increases in the lift and roll moment coefficients at Reynolds number 75,000 and high angles of attack near stall.

中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
表目錄 X
圖目錄 XI
符號表 XIV
第一章 序論 1
§1.1 前言 1
§1.2 電漿致動器原理 3
§1.3 文獻回顧 6
§1.3.1 電流體動力學致動器(Electrohydrodynamic actuator) 6
§1.3.2 基本幾何模型之研究 12
§1.3.3 其他方面之應用 14
§1.3.4 數值模擬 15
§1.3.5 無因次參數 19
§1.3.6 三角翼文獻回顧 20
§1.4 研究動機與目的 21
第二章 實驗方法與設備 22
§2.1 水洞 23
§2.2 低速風? 23
§2.2.1 皮托管及壓力轉換器 24
§2.2.2 外置式應變規力平衡儀 25
§2.2.3 A/D轉換器 25
§2.3 玻璃皮托管 25
§2.4 三角翼模型 27
§2.5 電漿致動器之製作 28
§2.5.1 高壓電設備 28
§2.5.2 致動器結構 29
§2.5.3 高壓衰減探棒(High voltage probe) 30
§2.6 實驗步驟 31
§2.7 翻轉係數(Roll moment coefficient)之計算 32
第三章 結果與討論 35
§3.1 三角翼染液視流實驗結果 35
§3.2 電漿致動器實驗結果 37
§3.3 電漿致動器附近的速度分布 39
§3.4 氣動力量測結果 41
§3.5 煙線視流結果 50
第四章 結論與建議 59
§4.1 結論 59
§4.2 建議 60
參考文獻 61


[1] M. Gad-El-Hak, “Flow Control, Cambridge: Cambridge University Press, 2000
[2] W. Shyy, M. Berg and D. Ljungqvist, “Flapping and Flexible Wings for Biological and Micro Air Vehicles, Progress in Aerospace Sciences 35, pp.455-505, 1999
[3] K. B. M. Q. Zaman and D. J. Mckinzie, “Control of Laminar Separation over Airfoils by Acoustic Excitation, AIAA J., pp.1075-1083, 1991
[4] D. Greenblatt and I. Wygnanski, “Use of Periodic Excitation to Enhance Airfoil Performance at Low Reynolds Numbers, Journal of Aircraft, pp.190-192, 2000
[5] E. Moreau, “Airflow Control by Non-thermal Plasma Actuators, J. Phys. 40, pp.605-636, 2007
[6] F. Rogier, J. C. Mat?o-V?lez and G?raldine Quinio, “Numerical Modeling of DC Discharges in Air Flows, Conference on Computational Physics, 2006
[7] J. D’Adamo, G. Artana, E. Moreau, and G. Touchard, “Control of the Airflow Close to a Flat Plate with Electrohydrodynamic Actuators, ASME Paper No.2002-31041, 2002
[8] R. Sosa, and G. Artana, “Steady Control of Laminar Separation over Airfoils with Plasma Sheet Actuators, Journal of Electrostatics 64, pp.604-610, 2006
[9] F. Soetomo, “The Influence of High Voltage Discharge on Flat Plate Drag at Low Reynolds Number Air Flow, MS Thesis, Iowa State University, 1992
[10] H. R. Velkoff and J. Ketcham, “Effect of an Electrostatic Field on Boundary Layer Transition, AIAA J. 16, pp.1381–1383, 1968
[11] G. M. Colver and S. E. Khabiry, “Modeling of DC Corona Discharge Along an Electrically Conductive Flat Plate with Gas Flow, IEEE Trans. Ind. Appl., Vol. 35(2), pp.387-394, 1999
[12] L. Leger, E. Moreau, G. Artana and G. Touchard, “Influence of a DC Corona Discharge on The Airflow Along an Inclined Flat Plate, Journal of Electrostatics 51-52, pp.300-306, 2001
[13] E. Moreau, L. Leger, and G. Touchard, “Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25m/s, Journal of Electrostatics 64, pp.215-225, 2006
[14] L. Leger, E. Moreau, and G. Touchard, “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate, IEEE Trans. Ind. Appl., Vol. 38 pp.1478-1485, 2002
[15] C. Louste, E. Moreau, and G. Touchard, “DC Corona Surface Discharge Along an Insulating Flat Plate in Air: Experimental Results, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.822-826, 2002
[16] 李卓翰,電漿致動器於三角翼上之應用,國立成功大學航太所,2009
[17] A. Fridman, A. Chirokov and A. Gutsol, “Non-thermal Atmospheric Pressure Discharge, J. Phys. D: Appl. Phys. 38, pp.1-24, 2005
[18] S. Yokoyama, M. Kogoma, T. Morikawi and S. Okazaki, “The Mechanisms of the Stabilized Glow Plasma at Atmospheric Pressure, J. Phys. D: Appl. Phys., pp.1125-1128, 1990
[19] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. S?egur and C. Mayoux, “Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier, J. Phys. D: Appl. Phys. 83, pp.2950–2957, 1998
[20] J. R. Roth and D. M. Sherman, “Boundary Layer Flow Control With a One Atmosphere Uniform Glow Discharge Surface Plasma, AIAA 36th Aerospace Sciences Meeting and Exhibit, 1998
[21] J. R. Roth, “Subsonic Plasma Aerodynamics for Flight Control of Aircraft,
[22] C. L. Enloe, T. E. McLaughlin, R. D. VanDyken, and K. D. Kachner, “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology, AIAA J. Vol.42, No.3, pp.589-594, 2004
[23] M. L. Post and T. C. Corke, “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators, AIAA J. Vol.42, No.11, pp.2177-2184, 2004
[24] T. C. Corke, M. L. Post, and D. M. Orlov, “Single-Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Concepts, Optimization, and Applications, Journal of Propulsion and Power. Vol.24, pp.935-945, 2008
[25] J. C. Laurentie, J. Jolibois, and E. Moreau, “Surface Dielectric Barrier Discharge: Effect of Encapsulation of the Grounded Electrode on the Electromechanical Characteristics of the Plasma Actuator, Journal of Electrostatics 67, pp.93–98, 2009
[26] G. Artana, R. Sosa, E. Moreau and G. Touchard, “Control of the Near-wake Flow Around a Circular Cylinder with Electrohydrodynamic Actuators, Experiments in Fluids 35, pp.580-588, 2003
[27] A. Asghar and E. Jumper, “Phase Synchronization of Vortex Shedding from Two Side-by-Side Circular Cylinders Using Plasma Actuators, AIAA Meeting paper 2004-925, 2004
[28] F. O. Thomas, A. Kozlov and T. C. Corke, “Plasma Actuators for Bluff Body Flow Control, AIAA Meeting paper 2006-2845, 2006
[29] F. O. Thomas, A. Kozlov, and T. C. Corke, “Plasma Actuators for Cylinder Flow Control and Noise Reduction, AIAA J. Vol.46 No.8, pp.1921-1931, 2008
[30] A. Santhanakrishnan and J. D. Jacob, “On Plasma Synthetic Jet Actuators, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006
[31] J. Huang, T. C. Corke, and F. O. Thomas, “Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades, AIAA J. Vol.44 No.7, pp.1477-1487, 2006
[32] A. Labergue, E. Moreau, N. Zouzou and G. Touchard, “Separation Control Using Plasma Actuators: Application to a Free Turbulent Jet, J. Phys. D: Appl. Phys. 40 pp.674–684, 2007
[33] D. Bivolaru, S. P. Kuo, “Aerodynamic Modification of Supersonic Flow Around Truncated Cone Using Pulsed Electrical Discharges, AIAA J. Vol.43 No.7, pp.1482-1489, 2005
[34] P. Q. Elias, B. Chanetz, S. Larigaldie, and D. Packan, “Study of the Effect of Glow Discharges Near a M=3 Bow Shock, AIAA J. Vol.45 No.9, pp.2237-2245, 2007
[35] P. Q. Elias, B. Chanetz, S. Larigaldie, D. Packan and C. O. Laux, “Mach 3 Shock Wave Unsteadiness Alleviation Using a Negative Corona Discharge, AIAA J. Vol.46 No.8, pp.2042-2049, 2008
[36] R. C. Nelson, T. C. Corke, C. He, H. Othman, T. Matsuno, M. P. Patel, and T. T. Ng, “Modification of the Flow Structure over a UAV Wing for Roll Control, AIAA paper 45th Aerospace Sciences Meeting, 2007
[37] Orlov, D., Apkter T.,He C., Othman H., and Corke, T. “Modeling and Experiment of Leading Edge Separation Control Using SDBD Plasma Actuators, AIAA 45th Aerospace Sciences Meeting, Reno, Nevada, 8-11 January 2007.
[38] Jayaraman, Balaji, Cho, Young-Chang and Shyy,Wei,Modeling of Dielectric Barrier Discharge Plasma Actuator, 38th AIAA Plasmadynamics and Lasers Conference, AIAA Paper, 2007-4531, 25 - 28 June 2007, Miami, FL., 2007.
[39] Shyy, W. Jayaraman, B., Andersson, A., “Modeling of Glow Discharge-Induced Fluid Dynamics, Journal of Applied Physics, Vol. 92, No. 11, pp. 6434-6443, 2002.
[40] G. L. Leonard, M. Mitchner, and S. A. Self, “An Experimental Study of The Electrohydrodynamic Flow in Electrostatic Precipitator, J. Fluid Mech. Vol. 127, pp.123-140, 1983
[41] R. Sosa, E. Moreau, G. Touchard, and G. Artana, “Stall Control at High Angle of Attack with Periodically Excited EHD Actuators, AIAA paper 2004-2738, 2004
[42] P. Magnier, D. Hong, A. L. Chesneau, J. M. Bauchire, and J. Hureau, “Control of Separated Flows with the Ionic Wind Generated by a DC Corona Discharge, Experiments in Fluids 42, pp.815-825, 2007
[43] A. M. Mitchell, J. Delery, “Research into Vortex Breakdown Control, Progress in Aerospace Sciences Vol.37 No.4, pp.385-418, 2001
[44] I. Gursul, “Review of Unsteady Vortex Flows over Slender Delta Wings, Journal of Aircraft, Vol.42 No.2, pp.299-319, 2005
[45] A. M. Mitchell, P. Molton, D. Barberis, and J. Delery, “Vortical Substructures in the Shear Layers Forming Leading Edge Vortices, AIAA paper 2001-31012, 2001
[46] Y. Guy, J. A. Morrow, and T. E. Mclaughlin, “Velocity Measurements on a Delta Wing with Periodic Blowing and Suction, AIAA paper 2000-0550,2000
[47] S. G. Siegel, and J. A. Morrow, “PIV Measurements on a Delta Wing with Periodic Blowing and Suction, AIAA paper 2001-2436,2001
[48] J. X. Zhan, and J. J. Wang, “Experimental Study on Gurney Flap and Apex Flap on a DeltaWing, Journal of Aircraft, Vol. 41, pp.1379-1383, 2004
[49] I. Gursul, R. Gordnier, and M. Visbal “Unsteady aerodynamics of nonslender delta wings, Progress in Aerospace Sciences, pp.515-557, 2005

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top