|
REFERRENCE 1. Pelicic V: Type IV pili: e pluribus unum? Mol Microbiol 2008, 68(4):827-837. 2. Alm RA, Mattick JS: Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 1997, 192(1):89-98. 3. Hobbs M, Mattick JS: Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 1993, 10(2):233-243. 4. McBride MJ: Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 2001, 55:49-75. 5. Mattick JS: Type IV pili and twitching motility. Annu Rev Microbiol 2002, 56:289-314. 6. Wall D, Kaiser D: Type IV pili and cell motility. Mol Microbiol 1999, 32(1):1-10. 7. Strom MS, Lory S: Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 1993, 47:565-596. 8. Craig L, Pique ME, Tainer JA: Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2004, 2(5):363-378. 9. Pugsley AP: The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 1993, 57(1):50-108. 10. Collyn F, Lety MA, Nair S, Escuyer V, Ben Younes A, Simonet M, Marceau M: Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun 2002, 70(11):6196-6205. 11. Carbonnelle E, Helaine S, Prouvensier L, Nassif X, Pelicic V: Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 2005, 55(1):54-64. 12. Yoshida T, Kim SR, Komano T: Twelve pil genes are required for biogenesis of the R64 thin pilus. J Bacteriol 1999, 181(7):2038-2043. 13. Ramer SW, Bieber D, Schoolnik GK: BfpB, an outer membrane lipoprotein required for the biogenesis of bundle-forming pili in enteropathogenic Escherichia coli. J Bacteriol 1996, 178(22):6555-6563. 14. Kirn TJ, Bose N, Taylor RK: Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 2003, 49(1):81-92. 15. Kennan RM, Dhungyel OP, Whittington RJ, Egerton JR, Rood JI: The type IV fimbrial subunit gene (fimA) of Dichelobacter nodosus is essential for virulence, protease secretion, and natural competence. J Bacteriol 2001, 183(15):4451-4458. 16. Wu SS, Kaiser D: Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 1995, 18(3):547-558. 17. Varga JJ, Nguyen V, O'Brien DK, Rodgers K, Walker RA, Melville SB: Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol Microbiol 2006, 62(3):680-694. 18. Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B: Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 2002, 68(2):745-755. 19. Stone BJ, Abu Kwaik Y: Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 1998, 66(4):1768-1775. 20. Li Y, Hao G, Galvani CD, Meng Y, De La Fuente L, Hoch HC, Burr TJ: Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 2007, 153(Pt 3):719-726. 21. Faast R, Ogierman MA, Stroeher UH, Manning PA: Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. Gene 1989, 85(1):227-231. 22. Giron JA, Ho AS, Schoolnik GK: An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 1991, 254(5032):710-713. 23. Giron JA, Levine MM, Kaper JB: Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol Microbiol 1994, 12(1):71-82. 24. Zhang XL, Tsui IS, Yip CM, Fung AW, Wong DK, Dai X, Yang Y, Hackett J, Morris C: Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 2000, 68(6):3067-3073. 25. Merz AJ, So M, Sheetz MP: Pilus retraction powers bacterial twitching motility. Nature 2000, 407(6800):98-102. 26. Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M: PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 1998, 29(1):321-330. 27. O'Toole GA, Kolter R: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998, 30(2):295-304. 28. Merz AJ, Enns CA, So M: Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 1999, 32(6):1316-1332. 29. Bradley DE: The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 1974, 58(1):149-163. 30. Skerker JM, Berg HC: Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 2001, 98(12):6901-6904. 31. Sun H, Zusman DR, Shi W: Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 2000, 10(18):1143-1146. 32. Kaiser D: Bacterial motility: how do pili pull? Curr Biol 2000, 10(21):R777-780. 33. Whitchurch CB, Hobbs M, Livingston SP, Krishnapillai V, Mattick JS: Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 1991, 101(1):33-44. 34. Wu SS, Wu J, Kaiser D: The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 1997, 23(1):109-121. 35. Wu SS, Wu J, Cheng YL, Kaiser D: The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 1998, 29(5):1249-1261. 36. Alm RA, Hallinan JP, Watson AA, Mattick JS: Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol Microbiol 1996, 22(1):161-173. 37. Orans J, Johnson MD, Coggan KA, Sperlazza JR, Heiniger RW, Wolfgang MC, Redinbo MR: Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility. Proc Natl Acad Sci U S A 2010, 107(3):1065-1070. 38. Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T: Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 2003, 50(1):61-68. 39. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T: Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 2008, 10(9):2331-2343. 40. Helaine S, Carbonnelle E, Prouvensier L, Beretti JL, Nassif X, Pelicic V: PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 2005, 55(1):65-77. 41. Lappann M, Haagensen JA, Claus H, Vogel U, Molin S: Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system. Mol Microbiol 2006, 62(5):1292-1309. 42. Eriksson J, Eriksson OS, Jonsson AB: Loss of Meningococcal PilU Delays Microcolony Formation and Attenuates Virulence in vivo. Infect Immun 2012. 43. Hu W, Yang Z, Lux R, Zhao M, Wang J, He X, Shi W: Direct visualization of the interaction between pilin and exopolysaccharides of Myxococcus xanthus with eGFP-fused PilA protein. FEMS Microbiol Lett 2012, 326(1):23-30. 44. Jurcisek JA, Bookwalter JE, Baker BD, Fernandez S, Novotny LA, Munson RS, Jr., Bakaletz LO: The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol Microbiol 2007, 65(5):1288-1299. 45. Varga JJ, Therit B, Melville SB: Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 2008, 76(11):4944-4951. 46. Scheuerpflug I, Rudel T, Ryll R, Pandit J, Meyer TF: Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 1999, 67(2):834-843. 47. Kehl-Fie TE, Miller SE, St Geme JW, 3rd: Kingella kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. J Bacteriol 2008, 190(21):7157-7163. 48. Rodgers K, Arvidson CG, Melville S: Expression of a Clostridium perfringens type IV pilin by Neisseria gonorrhoeae mediates adherence to muscle cells. Infect Immun 2011, 79(8):3096-3105. 49. Hadi N, Yang Q, Barnett TC, Tabei SM, Kirov SM, Shaw JG: Bundle-forming pilus locus of Aeromonas veronii bv. Sobria. Infect Immun 2012, 80(4):1351-1360. 50. Carruthers MD, Tracy EN, Dickson AC, Ganser KB, Munson RS, Jr., Bakaletz LO: Biological roles of nontypeable Haemophilus influenzae type IV pilus proteins encoded by the pil and com operons. J Bacteriol 2012, 194(8):1927-1933. 51. Nassif X, Lowy J, Stenberg P, O'Gaora P, Ganji A, So M: Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 1993, 8(4):719-725. 52. Rudel T, van Putten JP, Gibbs CP, Haas R, Meyer TF: Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 1992, 6(22):3439-3450. 53. Virji M, Alexandrescu C, Ferguson DJ, Saunders JR, Moxon ER: Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 1992, 6(10):1271-1279. 54. Virji M, Kayhty H, Ferguson DJ, Alexandrescu C, Heckels JE, Moxon ER: The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol 1991, 5(8):1831-1841. 55. Rudel T, Scheurerpflug I, Meyer TF: Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 1995, 373(6512):357-359. 56. Nassif X, Beretti JL, Lowy J, Stenberg P, O'Gaora P, Pfeifer J, Normark S, So M: Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A 1994, 91(9):3769-3773. 57. Morand PC, Drab M, Rajalingam K, Nassif X, Meyer TF: Neisseria meningitidis differentially controls host cell motility through PilC1 and PilC2 components of type IV Pili. PLoS One 2009, 4(8):e6834. 58. Soderholm N, Vielfort K, Hultenby K, Aro H: Pathogenic Neisseria hitchhike on the uropod of human neutrophils. PLoS One 2011, 6(9):e24353. 59. Kirov SM, Barnett TC, Pepe CM, Strom MS, Albert MJ: Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection. Infect Immun 2000, 68(7):4040-4048. 60. Fussenegger M, Rudel T, Barten R, Ryll R, Meyer TF: Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. Gene 1997, 192(1):125-134. 61. Lang E, Haugen K, Fleckenstein B, Homberset H, Frye SA, Ambur OH, Tonjum T: Identification of neisserial DNA binding components. Microbiology 2009, 155(Pt 3):852-862. 62. Higashi DL, Biais N, Weyand NJ, Agellon A, Sisko JL, Brown LM, So M: N. elongata produces type IV pili that mediate interspecies gene transfer with N. gonorrhoeae. PLoS One 2011, 6(6):e21373. 63. Rumszauer J, Schwarzenlander C, Averhoff B: Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006, 273(14):3261-3272. 64. Nakasugi K, Svenson CJ, Neilan BA: The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 2006, 152(Pt 12):3623-3631. 65. Assalkhou R, Balasingham S, Collins RF, Frye SA, Davidsen T, Benam AV, Bjoras M, Derrick JP, Tonjum T: The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 2007, 153(Pt 5):1593-1603. 66. Hobbs M, Collie ES, Free PD, Livingston SP, Mattick JS: PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 1993, 7(5):669-682. 67. Wu SS, Kaiser D: Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 1997, 179(24):7748-7758. 68. Parker D, Kennan RM, Myers GS, Paulsen IT, Songer JG, Rood JI: Regulation of type IV fimbrial biogenesis in Dichelobacter nodosus. J Bacteriol 2006, 188(13):4801-4811. 69. Kehl-Fie TE, Porsch EA, Miller SE, St Geme JW, 3rd: Expression of Kingella kingae type IV pili is regulated by sigma54, PilS, and PilR. J Bacteriol 2009, 191(15):4976-4986. 70. da Silva Neto JF, Koide T, Abe CM, Gomes SL, Marques MV: Role of sigma54 in the regulation of genes involved in type I and type IV pili biogenesis in Xylella fastidiosa. Arch Microbiol 2008, 189(3):249-261. 71. Boyd JM, Lory S: Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosa pilin subunit gene. J Bacteriol 1996, 178(3):831-839. 72. Zusman DR, McBride MJ: Sensory transduction in the gliding bacterium Myxococcus xanthus. Mol Microbiol 1991, 5(10):2323-2329. 73. Ward MJ, Zusman DR: Regulation of directed motility in Myxococcus xanthus. Mol Microbiol 1997, 24(5):885-893. 74. Whitchurch CB, Alm RA, Mattick JS: The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1996, 93(18):9839-9843. 75. Huang B, Whitchurch CB, Mattick JS: FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 2003, 185(24):7068-7076. 76. Kazmierczak BI, Lebron MB, Murray TS: Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 2006, 60(4):1026-1043. 77. Jain R, Behrens AJ, Kaever V, Kazmierczak BI: Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J Bacteriol 2012, 194(16):4285-4294. 78. Liles MR, Viswanathan VK, Cianciotto NP: Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 1998, 66(4):1776-1782. 79. Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS, Jr.: Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005, 73(3):1635-1643. 80. Mendez M, Huang IH, Ohtani K, Grau R, Shimizu T, Sarker MR: Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J Bacteriol 2008, 190(1):48-60. 81. Whiley RA, Beighton D: Current classification of the oral streptococci. Oral Microbiol Immunol 1998, 13(4):195-216. 82. Forner L, Larsen T, Kilian M, Holmstrup P: Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol 2006, 33(6):401-407. 83. Mylonakis E, Calderwood SB: Infective endocarditis in adults. N Engl J Med 2001, 345(18):1318-1330. 84. Sullam PM, Valone FH, Mills J: Mechanisms of platelet aggregation by viridans group streptococci. Infect Immun 1987, 55(8):1743-1750. 85. Kerrigan SW, Douglas I, Wray A, Heath J, Byrne MF, Fitzgerald D, Cox D: A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation. Blood 2002, 100(2):509-516. 86. Havarstein LS, Hakenbeck R, Gaustad P: Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 1997, 179(21):6589-6594. 87. Rodriguez AM, Callahan JE, Fawcett P, Ge X, Xu P, Kitten T: Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol Oral Microbiol 2011, 26(2):99-116. 88. Lau GW, Haataja S, Lonetto M, Kensit SE, Marra A, Bryant AP, McDevitt D, Morrison DA, Holden DW: A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 2001, 40(3):555-571. 89. Bartilson M, Marra A, Christine J, Asundi JS, Schneider WP, Hromockyj AE: Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 2001, 39(1):126-135. 90. Li YH, Tian XL, Layton G, Norgaard C, Sisson G: Additive attenuation of virulence and cariogenic potential of Streptococcus mutans by simultaneous inactivation of the ComCDE quorum-sensing system and HK/RR11 two-component regulatory system. Microbiology 2008, 154(Pt 11):3256-3265. 91. Callahan JE, Munro CL, Kitten T: The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model. PLoS One 2011, 6(10):e26403. 92. Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, Manque P, Ge X, Serrano MG, Puiu D et al: Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 2007, 189(8):3166-3175. 93. Okahashi N, Nakata M, Sakurai A, Terao Y, Hoshino T, Yamaguchi M, Isoda R, Sumitomo T, Nakano K, Kawabata S et al: Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 2010, 391(2):1192-1196. 94. Okahashi N, Nakata M, Terao Y, Isoda R, Sakurai A, Sumitomo T, Yamaguchi M, Kimura RK, Oiki E, Kawabata S et al: Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microb Pathog 2011, 50(3-4):148-154. 95. Shaw WV, Brenner DG, LeGrice SF, Skinner SE, Hawkins AR: Chloramphenicol acetyltransferase gene of staphylococcal plasmid pC221. Nucleotide sequence analysis and expression studies. FEBS Lett 1985, 179(1):101-106. 96. Mason DJ, Dietz A, Smith RM: Actinospectacin, a new antibiotic. I. Discovery and biological properties. Antibiot Chemother 1961, 11:118-122. 97. Lau PC, Sung CK, Lee JH, Morrison DA, Cvitkovitch DG: PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 2002, 49(2):193-205. 98. Paik S, Senty L, Das S, Noe JC, Munro CL, Kitten T: Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect Immun 2005, 73(9):6064-6074. 99. Kenney TJ, Moran CP, Jr.: Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J Bacteriol 1987, 169(7):3329-3339. 100. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254. 101. Shaw WV: Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 1975, 43:737-755. 102. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979, 76(9):4350-4354. 103. Doroshchuk NA, Gel'fand MS, Rodionov DA: [Regulation of nitrogen metabolism in gram-positive bacteria]. Mol Biol (Mosk) 2006, 40(5):919-926. 104. Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y: Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 2000, 28(5):1206-1210. 105. Fyfe JA, Carrick CS, Davies JK: The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. J Bacteriol 1995, 177(13):3781-3787. 106. Juarez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methe BA: PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbiol Biotechnol 2009, 16(3-4):146-158. 107. Richter LV, Sandler SJ, Weis RM: Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J Bacteriol 2012, 194(10):2551-2563. 108. Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH: Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 1991, 5(3):575-584. 109. Stulke J, Hillen W: Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 2000, 54:849-880. 110. Fisher SH: Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 1999, 32(2):223-232. 111. Kaiser D: Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol 2003, 1(1):45-54. 112. Kilian M, Mikkelsen, L. &; Henrichsen, J.: Taxonomic Study of Viridans Streptococci: Description of Streptococcus gordonii sp. nov. and Emended Descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). Int J Syst Bacteriol 1989, 39:471-484. 113. Chiang YC: Characterization of the Type IV pili gene cluster Streptococcus sanguinis SK36. 2011.
|