跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾姿穎
研究生(外文):Tzu Ying Tseng
論文名稱:血鏈球菌SK36第四型纖毛基因群之功能分析
論文名稱(外文):Characterization and functional analysis of the type IV pili gene cluster in Streptococcus sanguinis SK36
指導教授:陳怡原
指導教授(外文):Y. Y. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:64
中文關鍵詞:血鏈球菌第四型纖毛
外文關鍵詞:Streptococcus sanguinisType IV pili
相關次數:
  • 被引用被引用:0
  • 點閱點閱:561
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血鏈球菌(Streptococcus sanguinis) 是形成牙菌斑生物膜菌種之一且可入侵血液並引發伺機性亞急性心內膜炎。依已知口腔鏈球菌基因體得知血鏈球菌是唯一含第四型纖毛 (Type IV pili) 基因群的口腔鏈球菌。先前本實驗室的研究在第四型纖毛基因群的上游發現三個轉錄起始位置。利用電子顯微鏡觀察野生株時可在菌體表面發現由PilA 構成之短纖毛結構。然而,血鏈球菌的第四型纖毛之功能仍然不詳。本研究目的在分析此基因群的表現與功能。由纖毛啟動子結合報導基因分析結果得知,預測的三個啟動子均具活性,且CcpA蛋白質可負向調控纖毛啟動子的表現。經由西方墨點法分析得知生長時期影響菌體表面PilA的表現量,而以初期靜止期的表現量最高。利用第四型纖毛PilA的突變株得知第四型纖毛參與血鏈球菌與HeLa細胞及口腔鱗狀上皮細胞的沾附。綜合以上,第四型纖毛基因群的表現是由一複雜系統所調控,且經由這系統產生的纖毛有沾附宿主細胞的能力,顯示第四型纖毛對血鏈球菌致病機轉的重要性。
Streptococcus sanguinis is a member of the dental plaque and occasionally causes infective endocarditis. Thus far the gene cluster (pil) encoding type IV pili (Tfp) was found only in the genome of Streptococcus sanguinis SK36. Previous studies by using 5’ RACE analysis revealed 3 putative transcription initiation sites 5’ to the pil cluster. Short hair-like structures were observed on the surface of SK36 by using anti-SSA_2315 (PilA) antiserum under transmission electron microscopy. However, the biological functions of the Tfp in S. sanguinis SK36 remains unknown. This study aims to analyze the expression and function of the pil cluster. By using various pil promoter-reporter fusion strains, it was found that all 3 promoters were functional. The activity of a transcriptional fusion containing all 3 promoters was higher in the ccpA-deficient host than that in the wild-type background, indicating that the expression of the pil operon is subject to the regulation of CcpA. Western analysis of the PilA protein indicated that the biogenesis of Tfp was regulated by growth phases, with the highest expression at the early stationary phase. Inactivation of SSA_2313-2315 led to a 40% reduction in adherence to HeLa cells and squamous cell carcinoma (SCC-4) compared to the wild-type strain. Taken together, the expression of the pil cluster was regulated by a complex system and the biosynthesis of Tfp was closely associated with the development of growth phase. The binding of S. sanguinis SK36 Tfp to host cells supports the role of Tfp in the pathogenesis of S. sanguinis SK36.
TABLE OF CONTENTS
論文指導教授推薦書.........................................i
論文口試委員審定書......................................... ii
長庚大學博碩士紙本論文著作授權書.............................iii
誌謝.................................................... iv
中文摘要................................................. vi
ABSTRACT................................................vii
TABLE OF CONTENTS.......................................viii
LIST OF TABLES...........................................ix
LIST OF FIGURES...........................................x
LIST OF APPENDIX.........................................xi
INTRODUCTION..............................................1
MATERIALS AND METHODS.....................................10
RESULTS...................................................17
DISCUSSION................................................23
TABLES....................................................27
FIGURES...................................................30
APPENDIX..................................................40
REFERRENCE................................................42


LIST OF TABLES
TABLE 1. Bacteria strains constructed in this study.....................................27


LIST OF FIGURES
FIG. 1. S. sanguinis SK36 pil cluster and the construction of pil-
deletion derivatives....................................................................30
FIG. 2. The promoter activity of the type IV pili gene cluster of S. sanguinis SK36....31
FIG. 4. The regulation of pil promoters of the type IV pili gene cluster of S. sanguinis SK36 by CcpA............................................................................34
FIG. 5. The regulation of pil promoters of the type IV pili gene cluster of S. sanguinis SK36 by GlnR............................................................................35
FIG. 6. The expression of Tfp of wild-type S. sanguinis SK36 at different growth phases ................................................................................36
FIG. 7. Piliation of the wild-type and SSA_2313-2315 mutant strain examined by TEM.....37
FIG. 8. The adherence efficiency of wild-type S. sanguinis SK36 and
its derivatives to HeLa cells.......................................................... 38
FIG. 9. The adherence efficiency of wild-type S. sanguinis SK36 and
its derivatives to squamous cell carcinoma (SCC-4)......................................39


LIST OF APPENDIX
Appendix 1. Properties and BlastP search results of S. sanguinis SK36
pil cluster............................................................................40

REFERRENCE
1. Pelicic V: Type IV pili: e pluribus unum? Mol Microbiol 2008, 68(4):827-837.
2. Alm RA, Mattick JS: Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 1997, 192(1):89-98.
3. Hobbs M, Mattick JS: Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 1993, 10(2):233-243.
4. McBride MJ: Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 2001, 55:49-75.
5. Mattick JS: Type IV pili and twitching motility. Annu Rev Microbiol 2002, 56:289-314.
6. Wall D, Kaiser D: Type IV pili and cell motility. Mol Microbiol 1999, 32(1):1-10.
7. Strom MS, Lory S: Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 1993, 47:565-596.
8. Craig L, Pique ME, Tainer JA: Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2004, 2(5):363-378.
9. Pugsley AP: The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 1993, 57(1):50-108.
10. Collyn F, Lety MA, Nair S, Escuyer V, Ben Younes A, Simonet M, Marceau M: Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun 2002, 70(11):6196-6205.
11. Carbonnelle E, Helaine S, Prouvensier L, Nassif X, Pelicic V: Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 2005, 55(1):54-64.
12. Yoshida T, Kim SR, Komano T: Twelve pil genes are required for biogenesis of the R64 thin pilus. J Bacteriol 1999, 181(7):2038-2043.
13. Ramer SW, Bieber D, Schoolnik GK: BfpB, an outer membrane lipoprotein required for the biogenesis of bundle-forming pili in enteropathogenic Escherichia coli. J Bacteriol 1996, 178(22):6555-6563.
14. Kirn TJ, Bose N, Taylor RK: Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 2003, 49(1):81-92.
15. Kennan RM, Dhungyel OP, Whittington RJ, Egerton JR, Rood JI: The type IV fimbrial subunit gene (fimA) of Dichelobacter nodosus is essential for virulence, protease secretion, and natural competence. J Bacteriol 2001, 183(15):4451-4458.
16. Wu SS, Kaiser D: Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 1995, 18(3):547-558.
17. Varga JJ, Nguyen V, O'Brien DK, Rodgers K, Walker RA, Melville SB: Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol Microbiol 2006, 62(3):680-694.
18. Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B: Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 2002, 68(2):745-755.
19. Stone BJ, Abu Kwaik Y: Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 1998, 66(4):1768-1775.
20. Li Y, Hao G, Galvani CD, Meng Y, De La Fuente L, Hoch HC, Burr TJ: Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 2007, 153(Pt 3):719-726.
21. Faast R, Ogierman MA, Stroeher UH, Manning PA: Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. Gene 1989, 85(1):227-231.
22. Giron JA, Ho AS, Schoolnik GK: An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 1991, 254(5032):710-713.
23. Giron JA, Levine MM, Kaper JB: Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol Microbiol 1994, 12(1):71-82.
24. Zhang XL, Tsui IS, Yip CM, Fung AW, Wong DK, Dai X, Yang Y, Hackett J, Morris C: Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 2000, 68(6):3067-3073.
25. Merz AJ, So M, Sheetz MP: Pilus retraction powers bacterial twitching motility. Nature 2000, 407(6800):98-102.
26. Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M: PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 1998, 29(1):321-330.
27. O'Toole GA, Kolter R: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998, 30(2):295-304.
28. Merz AJ, Enns CA, So M: Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 1999, 32(6):1316-1332.
29. Bradley DE: The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 1974, 58(1):149-163.
30. Skerker JM, Berg HC: Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 2001, 98(12):6901-6904.
31. Sun H, Zusman DR, Shi W: Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 2000, 10(18):1143-1146.
32. Kaiser D: Bacterial motility: how do pili pull? Curr Biol 2000, 10(21):R777-780.
33. Whitchurch CB, Hobbs M, Livingston SP, Krishnapillai V, Mattick JS: Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 1991, 101(1):33-44.
34. Wu SS, Wu J, Kaiser D: The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 1997, 23(1):109-121.
35. Wu SS, Wu J, Cheng YL, Kaiser D: The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 1998, 29(5):1249-1261.
36. Alm RA, Hallinan JP, Watson AA, Mattick JS: Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol Microbiol 1996, 22(1):161-173.
37. Orans J, Johnson MD, Coggan KA, Sperlazza JR, Heiniger RW, Wolfgang MC, Redinbo MR: Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility. Proc Natl Acad Sci U S A 2010, 107(3):1065-1070.
38. Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T: Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 2003, 50(1):61-68.
39. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T: Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 2008, 10(9):2331-2343.
40. Helaine S, Carbonnelle E, Prouvensier L, Beretti JL, Nassif X, Pelicic V: PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 2005, 55(1):65-77.
41. Lappann M, Haagensen JA, Claus H, Vogel U, Molin S: Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system. Mol Microbiol 2006, 62(5):1292-1309.
42. Eriksson J, Eriksson OS, Jonsson AB: Loss of Meningococcal PilU Delays Microcolony Formation and Attenuates Virulence in vivo. Infect Immun 2012.
43. Hu W, Yang Z, Lux R, Zhao M, Wang J, He X, Shi W: Direct visualization of the interaction between pilin and exopolysaccharides of Myxococcus xanthus with eGFP-fused PilA protein. FEMS Microbiol Lett 2012, 326(1):23-30.
44. Jurcisek JA, Bookwalter JE, Baker BD, Fernandez S, Novotny LA, Munson RS, Jr., Bakaletz LO: The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol Microbiol 2007, 65(5):1288-1299.
45. Varga JJ, Therit B, Melville SB: Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 2008, 76(11):4944-4951.
46. Scheuerpflug I, Rudel T, Ryll R, Pandit J, Meyer TF: Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 1999, 67(2):834-843.
47. Kehl-Fie TE, Miller SE, St Geme JW, 3rd: Kingella kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. J Bacteriol 2008, 190(21):7157-7163.
48. Rodgers K, Arvidson CG, Melville S: Expression of a Clostridium perfringens type IV pilin by Neisseria gonorrhoeae mediates adherence to muscle cells. Infect Immun 2011, 79(8):3096-3105.
49. Hadi N, Yang Q, Barnett TC, Tabei SM, Kirov SM, Shaw JG: Bundle-forming pilus locus of Aeromonas veronii bv. Sobria. Infect Immun 2012, 80(4):1351-1360.
50. Carruthers MD, Tracy EN, Dickson AC, Ganser KB, Munson RS, Jr., Bakaletz LO: Biological roles of nontypeable Haemophilus influenzae type IV pilus proteins encoded by the pil and com operons. J Bacteriol 2012, 194(8):1927-1933.
51. Nassif X, Lowy J, Stenberg P, O'Gaora P, Ganji A, So M: Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 1993, 8(4):719-725.
52. Rudel T, van Putten JP, Gibbs CP, Haas R, Meyer TF: Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 1992, 6(22):3439-3450.
53. Virji M, Alexandrescu C, Ferguson DJ, Saunders JR, Moxon ER: Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 1992, 6(10):1271-1279.
54. Virji M, Kayhty H, Ferguson DJ, Alexandrescu C, Heckels JE, Moxon ER: The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol 1991, 5(8):1831-1841.
55. Rudel T, Scheurerpflug I, Meyer TF: Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 1995, 373(6512):357-359.
56. Nassif X, Beretti JL, Lowy J, Stenberg P, O'Gaora P, Pfeifer J, Normark S, So M: Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A 1994, 91(9):3769-3773.
57. Morand PC, Drab M, Rajalingam K, Nassif X, Meyer TF: Neisseria meningitidis differentially controls host cell motility through PilC1 and PilC2 components of type IV Pili. PLoS One 2009, 4(8):e6834.
58. Soderholm N, Vielfort K, Hultenby K, Aro H: Pathogenic Neisseria hitchhike on the uropod of human neutrophils. PLoS One 2011, 6(9):e24353.
59. Kirov SM, Barnett TC, Pepe CM, Strom MS, Albert MJ: Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection. Infect Immun 2000, 68(7):4040-4048.
60. Fussenegger M, Rudel T, Barten R, Ryll R, Meyer TF: Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. Gene 1997, 192(1):125-134.
61. Lang E, Haugen K, Fleckenstein B, Homberset H, Frye SA, Ambur OH, Tonjum T: Identification of neisserial DNA binding components. Microbiology 2009, 155(Pt 3):852-862.
62. Higashi DL, Biais N, Weyand NJ, Agellon A, Sisko JL, Brown LM, So M: N. elongata produces type IV pili that mediate interspecies gene transfer with N. gonorrhoeae. PLoS One 2011, 6(6):e21373.
63. Rumszauer J, Schwarzenlander C, Averhoff B: Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006, 273(14):3261-3272.
64. Nakasugi K, Svenson CJ, Neilan BA: The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 2006, 152(Pt 12):3623-3631.
65. Assalkhou R, Balasingham S, Collins RF, Frye SA, Davidsen T, Benam AV, Bjoras M, Derrick JP, Tonjum T: The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 2007, 153(Pt 5):1593-1603.
66. Hobbs M, Collie ES, Free PD, Livingston SP, Mattick JS: PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 1993, 7(5):669-682.
67. Wu SS, Kaiser D: Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 1997, 179(24):7748-7758.
68. Parker D, Kennan RM, Myers GS, Paulsen IT, Songer JG, Rood JI: Regulation of type IV fimbrial biogenesis in Dichelobacter nodosus. J Bacteriol 2006, 188(13):4801-4811.
69. Kehl-Fie TE, Porsch EA, Miller SE, St Geme JW, 3rd: Expression of Kingella kingae type IV pili is regulated by sigma54, PilS, and PilR. J Bacteriol 2009, 191(15):4976-4986.
70. da Silva Neto JF, Koide T, Abe CM, Gomes SL, Marques MV: Role of sigma54 in the regulation of genes involved in type I and type IV pili biogenesis in Xylella fastidiosa. Arch Microbiol 2008, 189(3):249-261.
71. Boyd JM, Lory S: Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosa pilin subunit gene. J Bacteriol 1996, 178(3):831-839.
72. Zusman DR, McBride MJ: Sensory transduction in the gliding bacterium Myxococcus xanthus. Mol Microbiol 1991, 5(10):2323-2329.
73. Ward MJ, Zusman DR: Regulation of directed motility in Myxococcus xanthus. Mol Microbiol 1997, 24(5):885-893.
74. Whitchurch CB, Alm RA, Mattick JS: The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1996, 93(18):9839-9843.
75. Huang B, Whitchurch CB, Mattick JS: FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 2003, 185(24):7068-7076.
76. Kazmierczak BI, Lebron MB, Murray TS: Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 2006, 60(4):1026-1043.
77. Jain R, Behrens AJ, Kaever V, Kazmierczak BI: Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J Bacteriol 2012, 194(16):4285-4294.
78. Liles MR, Viswanathan VK, Cianciotto NP: Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 1998, 66(4):1776-1782.
79. Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS, Jr.: Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005, 73(3):1635-1643.
80. Mendez M, Huang IH, Ohtani K, Grau R, Shimizu T, Sarker MR: Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J Bacteriol 2008, 190(1):48-60.
81. Whiley RA, Beighton D: Current classification of the oral streptococci. Oral Microbiol Immunol 1998, 13(4):195-216.
82. Forner L, Larsen T, Kilian M, Holmstrup P: Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol 2006, 33(6):401-407.
83. Mylonakis E, Calderwood SB: Infective endocarditis in adults. N Engl J Med 2001, 345(18):1318-1330.
84. Sullam PM, Valone FH, Mills J: Mechanisms of platelet aggregation by viridans group streptococci. Infect Immun 1987, 55(8):1743-1750.
85. Kerrigan SW, Douglas I, Wray A, Heath J, Byrne MF, Fitzgerald D, Cox D: A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation. Blood 2002, 100(2):509-516.
86. Havarstein LS, Hakenbeck R, Gaustad P: Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 1997, 179(21):6589-6594.
87. Rodriguez AM, Callahan JE, Fawcett P, Ge X, Xu P, Kitten T: Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol Oral Microbiol 2011, 26(2):99-116.
88. Lau GW, Haataja S, Lonetto M, Kensit SE, Marra A, Bryant AP, McDevitt D, Morrison DA, Holden DW: A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol Microbiol 2001, 40(3):555-571.
89. Bartilson M, Marra A, Christine J, Asundi JS, Schneider WP, Hromockyj AE: Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 2001, 39(1):126-135.
90. Li YH, Tian XL, Layton G, Norgaard C, Sisson G: Additive attenuation of virulence and cariogenic potential of Streptococcus mutans by simultaneous inactivation of the ComCDE quorum-sensing system and HK/RR11 two-component regulatory system. Microbiology 2008, 154(Pt 11):3256-3265.
91. Callahan JE, Munro CL, Kitten T: The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model. PLoS One 2011, 6(10):e26403.
92. Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, Manque P, Ge X, Serrano MG, Puiu D et al: Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 2007, 189(8):3166-3175.
93. Okahashi N, Nakata M, Sakurai A, Terao Y, Hoshino T, Yamaguchi M, Isoda R, Sumitomo T, Nakano K, Kawabata S et al: Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 2010, 391(2):1192-1196.
94. Okahashi N, Nakata M, Terao Y, Isoda R, Sakurai A, Sumitomo T, Yamaguchi M, Kimura RK, Oiki E, Kawabata S et al: Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microb Pathog 2011, 50(3-4):148-154.
95. Shaw WV, Brenner DG, LeGrice SF, Skinner SE, Hawkins AR: Chloramphenicol acetyltransferase gene of staphylococcal plasmid pC221. Nucleotide sequence analysis and expression studies. FEBS Lett 1985, 179(1):101-106.
96. Mason DJ, Dietz A, Smith RM: Actinospectacin, a new antibiotic. I. Discovery and biological properties. Antibiot Chemother 1961, 11:118-122.
97. Lau PC, Sung CK, Lee JH, Morrison DA, Cvitkovitch DG: PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 2002, 49(2):193-205.
98. Paik S, Senty L, Das S, Noe JC, Munro CL, Kitten T: Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect Immun 2005, 73(9):6064-6074.
99. Kenney TJ, Moran CP, Jr.: Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J Bacteriol 1987, 169(7):3329-3339.
100. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
101. Shaw WV: Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 1975, 43:737-755.
102. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979, 76(9):4350-4354.
103. Doroshchuk NA, Gel'fand MS, Rodionov DA: [Regulation of nitrogen metabolism in gram-positive bacteria]. Mol Biol (Mosk) 2006, 40(5):919-926.
104. Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y: Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 2000, 28(5):1206-1210.
105. Fyfe JA, Carrick CS, Davies JK: The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. J Bacteriol 1995, 177(13):3781-3787.
106. Juarez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methe BA: PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbiol Biotechnol 2009, 16(3-4):146-158.
107. Richter LV, Sandler SJ, Weis RM: Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J Bacteriol 2012, 194(10):2551-2563.
108. Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH: Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 1991, 5(3):575-584.
109. Stulke J, Hillen W: Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 2000, 54:849-880.
110. Fisher SH: Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 1999, 32(2):223-232.
111. Kaiser D: Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol 2003, 1(1):45-54.
112. Kilian M, Mikkelsen, L. &; Henrichsen, J.: Taxonomic Study of Viridans Streptococci: Description of Streptococcus gordonii sp. nov. and Emended Descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). Int J Syst Bacteriol 1989, 39:471-484.
113. Chiang YC: Characterization of the Type IV pili gene cluster Streptococcus sanguinis SK36. 2011.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top