跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.174) 您好!臺灣時間:2025/11/15 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林威志
研究生(外文):Lin, Wei-Chih
論文名稱:研發實場化學-生物串聯除硫化氫系統及次世代定序法研究氧化亞鐵硫桿菌突變株之基因體及轉錄體
論文名稱(外文):Development of Pilot-Scale Chemical-Biological H2S Elimination Systems and Characterization of Genome and Transcriptome of Acidithiobacillus ferrooxidans Mutant W3 by Next Generation Sequencing
指導教授:曾慶平
指導教授(外文):Tseng, Ching-Ping
學位類別:博士
校院名稱:國立交通大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:231
中文關鍵詞:沼氣硫化氫發電次世代定序
外文關鍵詞:biogashydrogen sulfidepower generationNGS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Acidithiobacillus ferrooxidans 是一種嗜酸性自營菌,可將亞鐵離子氧化為鐵離子以獲得電子及能量。本研究使用鐵離子將硫化氫氧化,並以此菌作為鐵離子的生物再生系統,串聯反應器可藉由鐵/亞鐵離子之循環再生來進行養豬場沼氣除硫之應用。文獻中及本實驗室原有的「載體式」串聯除硫反應器在高硫化氫負荷量下,會有硫沈澱物堵塞等缺點。因此,本研究新設計了「噴灑式」串聯除硫系統,能夠可靠與長期使用於沼氣除硫用途。在第一代「噴灑式」系統的實驗室規模操作中,我們測試了不同硫化氫進流速度以及液體噴灑壓力對於硫化氫去除率之影響。此測試證明該系統能在高硫化氫負荷量下 (~ 1,300 g-S m-3 h-1) 具有高去除率 (RE > 90%),且不會有硫沈澱物堵塞。「噴灑式」系統經放大後以野生株 CP9 進行 356 天之實場除硫測試,項目包含了突增負荷及停工試驗。在氣體滯留時間 216 秒的條件下,可達 94.8% 除硫效率及 64 g-S m-3 h-1 的負荷移除能力。此系統的快速復原能力證實了經過突增負荷及停工試驗後,不會對系統能力造成長期損害。在第二代「噴灑式」串聯除硫系統中,我們改良了化學槽及儲存槽的連接方式,提升最佳反應效能並快速有效將硫沈澱物移除。在實驗室規模操作中,我們測試了噴灑液滴及化學槽體積對於硫化氫去除率之影響。在第二代系統經放大後以高效能突變株 W3進行 500 天之實場除硫測試,最佳操作參數為氣體滯流時間 73 秒時,系統有 90% 除硫效率及 302 g-S m-3 h-1的負荷移除能力。除硫沼氣經 30 kW 發電機發電測試,以含 70% 甲烷之沼氣在 220 LPM 流速下進入發電機可得最大輸出功率 27.6 kW,此條件下的熱能使用效率達 26.4%。第二代反應器菌株 W3 之最大鐵氧化效率約為 CP9 之 2 倍,藉由化學槽體積及連接方式改良,使氣體滯留時間為原本三分之一即可處理約 5 倍的進流負荷。
再者,我們也分析了 A. ferrooxidans 野生株 CP9 及突變株 W3 之差異,本研究以次世代定序系統分析 CP9 及 W3 之基因體序列及不同培養條件下的全基因表現。CP9 及 W3基因體定序後,兩者皆有 88.4% (3309 個基因中的 2829 個基因) 的序列可比對到已知基因體的 A. ferrooxidans ATCC 23270。此外,在 W3 基因體上找到 310 個不同於 CP9 基因體之鹼基對,其中 288 個位於密碼子 (coding region) 上。以基因功能 (GO term) 分析這些突變基因的功能種類,發現與全基因分析後獲得的群組種類類似,此現象符合 W3 為隨機突變下獲得之突變株。在轉錄體分析方面,六個樣本分別有 80.3% - 81.9% 的資料可比對到已知的基因。此外,本研究首次以 NGS 的方法進行 A. ferrooxidans在不同能量來源 (硫及鐵) 下的大規模基因表現分析,對此菌在硫代謝與電子傳遞系統中提供新證據。研究結果中我們觀察到 sre 轉錄組的基因會產生將元素硫還原為硫化物的酵素 sulfur reductase,並在硫培養條件下有 2–4 倍增量表現。在鐵培養條件下,A. ferrooxidans 細胞內的硫化物來源為亞硫酸物,實驗觀察到 cysJ 及 cysI 在此條件下有約 8 倍增量表現,其酵素 sulfite reductase 可能是此催化反應的關鍵蛋白。除此之外,由結果可分析出共有十個基因,在 DNA層次為突變基因,也分別在四個條件下具有增量表現。其中的 glcF 較為特殊,其表現出的 glycolate oxidase 可將 A. ferrooxidans 在固碳作用中產生的毒性副產物 glycolate,進一步代謝為無毒的 glyoxylate。此基因只在 W3 的 lag phase 中相對於 log phase 有約 3 倍增量表現,但在 CP9 中,glcF於此兩 phases 並無明顯表現差異。本研究同時以 qPCR 確認 glcF 在 W3 菌株中有此現象,發現 lag phase 表現量為 log phase 之 6 倍,進一步證實此現象,由此我們推論在 lag phase 具 8 倍以上快速生長能力的 W3,可能是因為此基因引起之增強解毒能力的結果。

The acidophilic and autotrophic Acidithiobacillus ferrooxidans oxidizes ferrous iron into ferric iron to obtain the electrons and reducing power. The ferric iron was used to be an oxidant for H2S elimination and A. ferrooxidans was immobilized in the bioreactor for the ferric iron regeneration. This combined and renewable system was applied for the biogas purification in this study. The former “carrier-based” reactors are unadvisable as H2S elimination system because they are prone to sulfur blockage problems under heavy loading operations. Therefore, the “scrubbing-style” reactor was designed for robust biogas purification under pilot-scale long-term operation. In the type I “scrubbing-style” system of laboratory scale study, various H2S inlet flow rates and spray pressures were used to evaluate the H2S removal efficiency (RE) in the chemical reactor. The high H2S RE (> 90%) demonstrated that this scrubbing-style system performed well under heavy loading (~ 1,300 g-S m-3 h-1) without severe sulfur blockage. In the scaled-up application, the type I system using A. ferrooxidans CP9 was operated for consecutive 356 days for biogas purification, including shock loading and shutdown tests. The system achieved an average RE of 94.8% with an elimination capacity (EC) value of 64 g-S m-3 h-1 under EBRT 216 s. In addition, the system recovered quickly in the shock loading and shutdown tests without permanent damage; however, the solid sulfur still caused blockage after the long-term operation. In the type II “scrubbing-style” system, the design of the connection between the chemical absorbers and the storage tank was improved to elevate the removal efficiency and quickly remove the sulfur solid. In laboratory scale study, the effects of droplet size and column size on the optimal H2S removal were characterized. In the scaled-up application, the type II system using the high growth rate strain W3 was operated for 500 consecutive days for biogas purification. The optimal conditions were an average RE of 90% with an EC of 302 g-S m-3 h-1 under EBRT 73 s. In the power generation test with 30 kW biogas generation, the maximum power output was 27.6 kW and the maximum thermal efficiency was 26.4% at a biogas supply rate of 220 litter per minute (LPM) using 70% CH4. The W3 strain in the type II system showed approximately 100% higher maximum iron oxidation rate than the CP9 in the type I system. Furthermore, only 34% EBRT was required for the type II system to deal with the 5 folds H2S loading higher than the type I system.
To further characterize the differences between A. ferrooxidans CH9 and W3, their genome and transcriptome were subjected to next-generation sequencing (NGS) analysis. The results show 88.4% of the sequenced genomes (2829 of 3309 genes) from CP9 and W3 were assembled by mapping to the reference ATCC 23270 genome. Moreover, 288 mutated paired bases were located on the 79 coding sequences (CDS), whereas 22 paired bases were located on the non-coding region of the W3 genome. The gene ontology (GO term) analysis showed similar hit term distributions for both mutant genes and total genes, which indicates that the mutation rate in each specific class is size-related and randomly mutated. In the NGS transcriptomic analysis, the total qualified paired-end sequencing reads from six samples mapped to the reference genome ranged from 80.3% to 81.9%. Also, this study is the first time to apply NGS in the differential expressed gene analysis of a different energy source for A. ferrooxidans. Collection of sulfur metabolism–related genes from the NGS data provided new evidence of candidate genes that encode key enzymes involved in unidentified pathways. For example, the sreABCD protein encoded in the sre operon was highly expressed under sulfur-growth conditions (fold change (FC) = 2–4), which was considered responsible for reducing sulfur into sulfide. Moreover, cysJ and cysI are highly expressed under iron-growth conditions (FC = 8). Thus, these genes encode proteins that catalyze the reduction of sulfite into sulfide and could involve in the only pathway for sulfide production under such conditions. Furthermore, 10 genes were found in the mutant W3 with differentially expressed under four various conditions. In particular, glcF was highly expressed (FC = 2.7) during the lag phase rather than in the log phase of the mutant W3; however, this gene was minimally expressed during both the lag phase and the log in the CP9 strain. The fold change was also examined by quantitative polymerase chain reaction (qPCR) and shows the evidence that glcF in W3 was highly expressed (FC = 6.1) in the lag phase than in the log phase. The glycolate oxidase encoded by the glc operon could catalyze the conversion of glycolate into innocuous glyoxylate in A. ferrooxidans carbon metabolism. Therefore, highly efficient detoxification could be account for the 8.5 folds higher growth rate during the lag phase of the mutant W3 than that of the CP9.

Abstract ……………………………………………………………………………...III
Acknowledgement………………………………………………………………….VIII
Chapter 1. Introduction 1
1.1 Research rationale 1
1.2 Research objectives 2
1.3 Research flow chart 3
Chapter 2. Literature reviews 4
2.1 Development of renewable energy 4
2.2 Introduction of biogas 5
2.2.1 Development of biogas resource from swine waste in Taiwan 6
2.2.2 Generation of biogas 7
2.2.3 Impurities in biogas 8
2.3 Methods for biogas purification 10
2.3.1 Physical methods for biogas purification 11
2.3.2 Biological methods for biogas purification 13
2.3.3. Chemical methods for biogas purification 15
2.3.4. Regeneration of chemical reagents 18
2.3.5. Combined chemical–biological method 20
2.4. Spraying system 21
2.5 Description and significance 24
2.6 Genome structure of Acidithiobacillus ferrooxidans 25
2.7 Recent research on the general physiology of A. ferrooxidans 25
2.7.1 Carbon metabolism 26
2.7.2 Nitrogen metabolism 27
2.7.3 Aerobic ferrous iron oxidation 28
2.7.4 Sulfur oxidation 29
2.8 Anaerobic growth of A. ferrooxidans 30
2.9 Mixotrophic growth of A. ferrooxidans 31
2.10 Industrial applications of A. ferrooxidans on bioleaching 32
Chapter 3. Materials and methods 35
3.1 Microorganism isolation identification 35
3.1.1 Culture media of A. ferrooxidans 35
The compositions of broth and solid media for the growth of A. ferrooxidans are listed in the table 3.1. 35
3.1.2 Immobilization process of A. ferrooxidans 35
3.1.3 Analysis of the cell density from inoculated carrier 36
3.1.4 Analysis of the cell density from broth media 36
3.2 Chemical-biological H2S elimination systems 36
3.2.1 Carrier-based style reactor – 50 pigs pilot scale 37
3.2.2 Scrubbing-style reactor type I – lab scale 37
3.2.3 Scrubbing-style reactor type I – 750 pigs pilot scale 38
3.2.4 Scrubbing-style reactor type II – lab scale 39
3.2.5 Scrubbing-style reactor type II – 3,000 pigs pilot scale 39
3.3 Operation of the carrier-based style reactor (pilot, 50 pigs) 40
3.4 Operation of the scrubbing-style reactor type I (lab scale) 40
3.4.1 Effects of H2S inlet flowrate and liquid spraying pressure on H2S removal (chemical reaction only) 40
3.4.2 Iron oxidation rate analysis in bioreactor for the scale-up design 41
3.5 Operation of the scrubbing-style reactor type II (pilot, 750 pigs) 41
3.6 Operation of the scrubbing-style reactor type II (lab scale) 42
3.6.1 Effect of the spraying droplet size on H2S elimination in lab scale study 42
3.6.2 Effect of the absorber size on H2S elimination in lab scale study 42
3.6.3 Evaluation of the optimal pH on H2S elimination and cell growth in lab scale study 43
3.7 Operation of the scrubbing-style reactor II (pilot, 3,000 pigs) 43
3.8 Analytical methods 44
3.8.1 Ferrous iron (Fe2+) determination 44
3.8.2 ferric iron (Fe3+) determination 44
3.8.3 total iron determination 45
3.8.4 elemental sulfur (S0) determination 45
3.8.5 sulfide (S2-) determination 46
3.8.6 sulfate (SO42-) determination 48
3.8.7 Hydrogen sulfide (H2S) determination 48
3.8.8 methane (CH4) determination 49
3.8.9 carbon dioxide (CO2) determination 49
3.8.10 moisture and temperature determination 49
3.8.11 pressure drop determination 49
3.8.12 sprayed droplet size determination by particle image velocimetry (PIV) 50
3.8.13 Bioaerosol analysis 50
3.8.14 Empty bed retention time (EBRT) calculation 51
3.8.15 H2S loading value calculation 51
3.8.16 Biological ferrous iron oxidation rate in the bioreactor 51
3.8.17 Power generation analysis 52
3.9 Microbial population analysis by DGGE 52
3.9.1 Genomic DNA extraction from the carrier sample 52
3.9.2 Nested PCR 53
3.9.3 DNA electrophoresis and gel extraction 53
3.9.4 Building the DGGE gel assembly 54
3.9.5 Pouring the gel 54
3.9.6 Running the gel 55
3.9.7 Staining the gel 56
3.9.8 Sequencing and strain identification 56
3.10 Random mutagenesis for high growth rate A. ferrooxidans selection 57
3.10.1 NTG random mutagenesis (Delić et al., 1970) 57
3.10.2 Selection of the high growth rate strain by the batch broth media 58
3.10.3 Selection of the high growth rate strain by the continuous culture 58
3.11 Comparison of the growth performances between the mutant and CP9 strains 59
3.11.1 Ferrous iron oxidation ability test in batch culture 59
3.11.2 Effect of washout rate on growth performance in continuous culture 59
3.12 Analysis of genomics and transcriptomics on A. ferrooxidans – sample preparation 60
3.12.1 A. ferrooxidans genomic DNA extraction 60
3.12.2 A. ferrooxidans total RNA extraction 60
3.12.3 RNA Formaldehyde-agarose gel electrophoresis 62
3.13 Analysis of transcriptomics on A. ferrooxidans – Next Generation Sequencing (NGS) 64
3.13.1 Quality control of RNA samples for NGS (Yourgene Bioscience, Taiwan) 64
3.13.2 Construction of cDNA library for NGS 64
3.13.3 Library cluster formation and sequencing by Illumia Hiseq 2000 65
3.13.4 Analysis of the NGS data, assembly transcripts and estimates their abundances 66
3.13.5 Volcano plot 66
3.13.6 Hypergeometric probability test 67
3.14 Analysis of transcriptomics on A. ferrooxidans – The qPCR confirmation 68
3.14.1 Reverse transcriptase PCR for cDNA preparation 68
3.14.2 Quantitative PCR (qPCR) 68
Chapter 4. Results and discussion 70

Results and discussion of Part I 70
Part I. Development and operation of the type I scrubbing chemical-biological biogas purification systems
4.1 Development of solid media for A. ferrooxidans plating 70
4.2 Carrier-based style reactor – 50 pigs scale 71
4.2.1 Effects of biogas inlet rate on the Fe2+ / Fe3+ concentration 71
4.2.2 Effects of H2S loading on the efficiency of H2S removal 73
4.2.3 Variations in pH and cell density 73
4.3 Scrubbing-style reactor I – lab scale 74
4.3.1 Effects of H2S inlet flow rates and spraying pressures on the efficiency of H2S removal 74
4.3.2 Effects of H2S loading on the H2S removal efficiency 75
4.4 Pilot-scale scrubbing-style reactor I for H2S removal from biogas 76
4.4.1 Effect of inlet H2S concentration and loading on the performance of pilot-scale scrubbing-style reactor I 77
4.4.2 Fe2+ / Fe3+ ratio variation in the chemical-biological system 79
4.4.3 pH and pressure drop variation during the operation processes 80
4.4.4 Bacterial cell numbers and community analysis 82

Results and discussions of Part II 86
Part II. Development and operation of type II scrubbing chemical-biological biogas purification systems
4.5 Scrubbing-style reactor type II – lab scale 86
4.5.1 Effect of the spraying droplet size and the absorber size on H2S elimination in the lab-scale study 86
4.5.2 Effect of the absorber size on H2S elimination in the lab-scale 88
4.5.3 Evaluation of the optimal pH on H2S elimination and cell growth in the lab-scale study 90
4.6 Scrubbing-style reactor II – 3,000 pigs scale 91
4.6.1 Effect of EBRT and loading on the performance of the hybrid system in the field scale operation 91
4.6.2 Analysis of the ferrous / ferric iron ratio variation and the biological oxidizing capacity in the field scale operation 93
4.6.3 Pressure drop and cell number variation in the field scale operation 94
4.6.4 Microbial communities analysis by DGGE 97
4.6.5. Effects of methane concentration and biogas supply rate on power generation 97

Results and discussions of Part III 100
Part III. Selection of the high growth rate A. ferrooxidans mutant strain and mutant sites localization by NGS whole genome sequencing
4.7 Selection of the high growth rate A. ferrooxidans strain 100
4.8 Genomic properties 101
4.9 Contig assembly and mapping of genomic sequence 102
4.10 Localization of W3 mutant sites 103
4.11 Functional annotation and classification of W3 mutant genes 104
4.12 Analysis of the differentially expressed genes in the noncoding regions of A. ferrooxidans mutant W3 104

Results and discussions of Part IV 107
Part IV. Transcriptome profiling of differential expression involved in strains (CP9 and W3), cell phase (log and lag), and energy source (Fe and S) with NGS
4.13 Transcriptome properties 107
4.14 Contig assembly and mapping of transcriptomic sequence 107
4.15 Functional and differential expression analysis of transcriptomic data 108
4.15.1 Lag - W3/CP9 condition 109
4.15.2 Log - W3/CP9 condition 110
4.15.3 CP9 - log/lag condition 111
4.15.4 W3 - log/lag condition 112
4.15.5 CP9 – S/Fe condition 113
4.15.6 W3 – S/Fe condition 114
4.16 Differentially expressed genes under S or Fe energy sources 115
4.16.1 Conversion of sulfur to sulfite 117
4.16.2 Conversion of sulfur to sulfide 118
4.16.3 Conversion of sulfite to sulfide 118
4.16.4 Conversion of sulfate into adenylylsulfate (APS) and then into sulfite 119
4.17 Analysis of the cross-relationship between gene mutation and differential expression 119
Chapter 5 Conclusions 122
5.1 Part I – Development and operation of the type I scrubbing chemical–biological biogas purification systems 122
5.2 Part II – Development and operation of the type II scrubbing chemical-biological biogas purification systems 123
5.3 – Part III Selection of the high growth rate A. ferrooxidans mutant strain and mutant sites localization by NGS whole genome sequencing 124
5.4 – Part IV Transcriptome profiling of differential expression involved in strains (CP9 and W3), cell phase (log and lag), and energy source (Fe and S) with NGS 125
5.5 Prime cost analysis in the biogas development in Taiwan 127
Reference…………………………………………………………………………..208
Publications………………………………………………………………………..222

Acevedo, F., 2000. The use of reactors in biomining processes. Electron. J. Biotechnol. 3, 10–11.
Acosta, M., Beard, S., Ponce, J., Vera, M., Mobarec, J.C., Jerez, C.A., 2005. Identification of Putative Sulfurtransferase Genes in the Extremophilic Acidithiobacillus ferrooxidans ATCC 23270 Genome: Structural and Functional Characterization of the Proteins. OMICS 9, 13–29.
Alemzadeh, I., Kahrizi, E., Vossoughi, M., 2009. Bio-oxidation of ferrous ions by Acidithioobacillus ferrooxidans in a monolithic bioreactor. J. Chem. Technol. Biotechnol. 84, 504–510.
Angelidaki, I., Ellegaard, L., Ahring, B.K., 1993. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol. Bioeng. 42, 159–166.
Appia-Ayme, C., Guiliani, N., Ratouchniak, J., Bonnefoy, V., 1999. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl. Environ. Microb. 65, 4781–4787.
Appia-Ayme, C., Quatrini, R., Denis, Y., Denizot, F., Silver, S., 2006. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy. 83, 273-280.
Appia-Ayme, C.C., Bengrine, A.A., Cavazza, C.C., Giudici-Orticoni, M.T.M., Bruschi, M.M., Chippaux, M.M., Bonnefoy, V.V., 1998. Characterization and expression of the co-transcribed cyc1 and cyc2 genes encoding the cytochrome c4 (c552) and a high-molecular-mass cytochrome c from Thiobacillus ferrooxidans ATCC 33020. FEMS Microbiol Lett 167, 171–177.
Asai, S., Konishi, Y., Yabu, T., 1990. Kinetics of absorption of hydrogen sulfide into aqueous ferric sulfate solutions. AIChE J. 36, 1331–1338.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., 2000. Gene Ontology: tool for the unification of biology. Nature genetics 25, 25–29.
Barreto, M., Jedlicki, E., Holmes, D.S., 2005. Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 71, 2902–2909.
Barreto, M., Quatrini, R., Bueno, S., Arriagada, C., Valdes, J., 2003. Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence. Hydrometallurgy. 71, 97-105.
Barron, J.L., Lueking, D.R., 1990. Growth and Maintenance of Thiobacillus ferrooxidans Cells. Appl. Environ. Microb. 56, 2801–2806.
Barros, M.E.C., Rawlings, D.E., Woods, D.R., 1984. Mixotrophic Growth of a Thiobacillus ferrooxidans Strain. Appl. Environ. Microb. 47, 593–595.
Belmabkhout, Y., De Weireld, G., Sayari, A., 2009. Amine-Bearing Mesoporous Silica for CO 2and H 2S Removal from Natural Gas and Biogas. Langmuir 25, 13275–13278.
Bernstein, J.A.J., Khodursky, A.B.A., Lin, P.-H.P., Lin-Chao, S.S., Cohen, S.N.S., 2002. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci 99, 9697–9702.
Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G., 2004. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715.
Bozorgi, Y., Keshavarz, P., Taheri, M., Fathikaljahi, J., 2006. Simulation of a spray scrubber performance with Eulerian/Lagrangian approach in the aerosol removing process. J. Hazard. Mater. 137, 509–517.
Brasseur, G., Bruscella, P., Bonnefoy, V., Lemesle-Meunier, D., 2002. The bc(1) complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc(1) complex? Biochim. Biophys. Acta. 1555, 37–43.
Brasseur, G.G., Levican, G.G., Bonnefoy, V.V., Holmes, D.D., Jedlicki, E.E., Lemesle-Meunier, D.D., 2004. Apparent redundancy of electron transfer pathways via bc"1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim. Biophys. Acta. 1656, 13–13.
Bruscella, P., Appia-Ayme, C., Levicán, G., Ratouchniak, J., Jedlicki, E., Holmes, D.S., Bonnefoy, V., 2007. Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology (Reading, Engl.) 153, 102–110.
Caglayan, P., Yasyerli, S., Ar, I., Dogu, G., 2006. Kinetics of H2S Sorption on Manganese Oxide and Mn-Fe-Cu Mixed Oxide Prepared by the Complexation Technique. Int. J. Chem. React. Eng. 4, A18.
Chien, T.W., Chu, H., 2000. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution. J. Hazard. Mater. 80, 43–57.
Chiu, S.-Y., Kao, C.-Y., Huang, T.-T., Lin, C.-J., Ong, S.-C., Chen, C.-D., Chang, J.-S., Lin, C.-S., 2011. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour. Technol. 102, 9135–9142.
Chung, Y.-C., Ho, K.-L., Tseng, C.-P., 2006a. Treatment of high H2S concentrations by chemical absorption and biological oxidation process. Environ. Eng. Sci. 23, 942–953.
Chung, Y.-C., Ho, K.-L., Tseng, C.-P., 2007. Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S. J. Air Waste Manag. Assoc. 57, 337–347.
Chung, Y.C., Ho, K.L., Tseng, C.P., 2006b. Treatment of high H2S concentrations by chemical absorption and biological oxidation process. Environ. Eng. Sci. 23, 942–953.
Daoud, J., Karamanev, D., 2006. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner. Eng. 19, 960–967.
Dave, S.R., 2008. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor. Bioresour. Technol. 99, 7803–7806.
Davydov, A., Chuang, K., Sanger, A., 1998. Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces. J. Phys. Chem. B 102, 4745–4752.
Delić, V., Hopwood, D.A., Friend, E.J., 1970. Mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutat. Res.-Fund. Mol. M. 9, 167–182.
Demirbas, A., 2010. Methane Gas Hydrate (Green Energy and Technology), 1st ed. Springer.
Deng, L., Chen, H., Chen, Z., Liu, Y., Pu, X., Song, L., 2009. Process of simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine wastewater. Bioresour. Technol. 100, 5600–5608.
Drake, J.W., Charlesworth, B., Charlesworth, D., Crow, J.F., 1998. Rates of Spontaneous Mutation. Genetics. 148, 1667-1686.
Drobner, E., Huber, H., Stetter, K.O., 1990. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microb. 56, 2922–2923.
Dugan, P.R., 1986. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. I. Preliminary experiments in controlled shaken flasks. Biotechnol. Bioeng. 29, 41–48.
Ebrahimi, S., Kleerebezem, R., van Loosdrecht, M., Heijnen, J., 2003. Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions. Chem. Eng. Sci. 58, 417–427.
Evangelou, V.P., Zhang, Y.L., 1995. A review: Pyrite oxidation mechanisms and acid mine drainage prevention. BEST 25, 141–199.
Farah, C.C., Vera, M.M., Morin, D.D., Haras, D.D., Jerez, C.A.C., Guiliani, N.N., 2005. Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 71, 7033–7040.
38. Fortuny, M., Baeza, J.A., Gamisans, X., Casas, C., Lafuente, J., Deshusses, M.A., Gabriel, D., 2008. Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71, 10–17.
Gabriel, D., 2003. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci 100, 6308–6312.
Gale, N.L.N., Beck, J.V.J., 1967. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans. J. Bacteriol. 94, 1052–1059.
García, E., Palacios, J.M., Alonso, L., Moliner, R., 2000. Performance of Mn and Cu Mixed Oxides as Regenerable Sorbents for Hot Coal Gas Desulfurization. Energy Fuels 14, 1296–1303.
Gendel, Y., Levi, N., Lahav, O., 2009. H2S (g) Removal Using a Modified, Low-pH Liquid Redox Sulfur Recovery (LRSR) Process with Electrochemical Regeneration of the Fe Catalyst Couple. Environ. Sci. Technol. 43, 8315–8319.
Giaveno, A., Lavalle, L., Guibal, E., Donati, E., 2008. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads. J. Microbiol. Meth. 72, 227–234.
Giro, M.E.A., Garcia, O., Jr., Zaiat, M., 2006. Immobilized cells of Acidithiobacillus ferrooxidans in PVC strands and sulfite removal in a pilot-scale bioreactor. Biochem. Eng. J. 28, 201–207.
Godini, H.R., Mowla, D., 2008. Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds. Chem. Eng. Res. Des. 86, 401–409.
Goncalves, J.J., Govind, R., 2008. H2S Abatement in a biotrickling filter using iron(III) foam media. Chemosphere 73, 1478–1483.
González-Sánchez, A., Revah, S., Deshusses, M.A., 2008. Alkaline Biofiltration of H2S Odors. Environ. Sci. Technol. 42, 7398–7404.
González-Toril, E., Llobet-Brossa, E., Casamayor, E.O., Amann, R., Amils, R., 2003. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microb. 69, 4853–4865.
Grande, C.A., Rodrigues, A.E., 2007. Layered Vacuum Pressure-Swing Adsorption for Biogas Upgrading. Ind. Eng. Chem. Res 46, 7844–7848.
Grishin, S.I., Bigham, J.M., Tuovinen, O.H., 1988. Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Appl. Environ. Microb. 54, 3101–3106.
Groenenberg, D.S., Pirovano, W., Gittenberger, E., Schilthuizen, M., 2011. The complete mitogenome of Cylindrus obtusus (Helicidae, Ariantinae) using Illumina next generation sequencing. BMC Genomics 13, 114–114.
Guerra, V.G., Gonçalves, J.A.S., Coury, J.R., 2009. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber. J. Hazard. Mater. 161, 351–359.
Harasimowicz, M.M., Orluk, P.P., Zakrzewska-Trznadel, G.G., Chmielewski, A.G.A., 2007. Application of polyimide membranes for biogas purification and enrichment. J. Hazard. Mater. 144, 698–702.
He, H., Zhang, C.-G., Xia, J.-L., Peng, A.-A., Yang, Y., Jiang, H.-C., Zheng, L., Ma, C.-Y., Zhao, Y.-D., Nie, Z.-Y., Qiu, G.-Z., 2008. Investigation of Elemental Sulfur Speciation Transformation Mediated by Acidithiobacillus ferrooxidans. Curr. Microbiol. 58, 300–307.
Heinhorst, S., Baker, S.H., Johnson, D.R., Davies, P.S., Cannon, G.C., Shively, J.M., 2002. Two Copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr. Microbiol. 45, 115–117.
Ho, K.-L., Chung, Y.-C., Lin, Y.-H., Tseng, C.-P., 2008. Microbial populations analysis and field application of biofilter for the removal of volatile-sulfur compounds from swine wastewater treatment system. J. Hazard. Mater. 152, 580–588.
Ho, K.-L., Chung, Y.-C., Tseng, C.-P., 2008. Continuous deodorization and bacterial community analysis of a biofilter treating nitrogen-containing gases from swine waste storage pits. Bioresour. Technol. 99, 2757–2765.
Ho, K.-L., Lin, W.-C., Chung, Y.-C., Chen, Y.-P., Tseng, C.-P., 2013. Elimination of high concentration hydrogen sulfide and biogas purification by chemical-biological process. Chemosphere 92, 1396–1401.
Horikawa, M.S., Rossi, F., Gimenes, M.L., Costa, C.M.M., Silva, M.G.C.D., 2004. Chemical absorption of H2S for biogas purification. Braz. J. Chem. Eng. 21.
Huang, L., Youzhou, J., Tingzhou, L., Quanguo, Z., 2010. Orthogonal Test About Biogas Upgrading by Pressured Water Scrubbing. Journal of Northeast Agricultural University 17 (4), 50-55
Huertas, J.I., Giraldo, N., Izquierdo, S., 2011. Removal of H2S and CO2 from Biogas by Amine Absorption. Mass Transfer in Chemical Engineering Processes
ISBN: 978-953-307-619-5.
Janssen, A.J.A., Ma, S.C.S., Lens, P.P., Lettinga, G.G., 1997. Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnol. Bioeng. 53, 32–40.
Jensen, A.B., Webb, C., 1995. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem. 30, 225–236.
Jiang, X., Yan, R., Tay, J.H., 2009a. Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration. J. Hazard. Mater. 164, 726–732.
Jiang, X., Yan, R., Tay, J.H., 2009b. Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere 75, 1350–1355.
Johnson, D.B., Okibe, N., Hallberg, K.B., 2005. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis. J. Microbiol. Meth. 60, 299–313.
Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acid. Res. 28, 27-30.
Kawabe, Y., Suto, K., Inoue, C., Chida, T., 1999. Enhancement of the specific growth rate of Thiobacillus ferrooxidans by diatomaceous earth. J. Biosci. Bioeng. 88, 374–379.
Kim, T.W., Kim, C.J., Chang, Y.K., Ryu, H.W., Cho, K.S., 2002. Development of an Optimal Medium for Continuous Ferrous Iron Oxidation by Immobilized Acidothiobacillus ferrooxidans Cells. Biotechnol. Prog. 18, 752–759.
Koo, J., Hong, J., Lee, H., Shin, S., 2010. Effects of the particle residence time and the spray droplet size on the particle removal efficiencies in a wet scrubber. Heat Mass Transfer 46, 649–656.
Krischan, J., Makaruk, A., Harasek, M., 2012. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas. J. Hazard. Mater. 215-216, 49–56.
Kucera, J., Bouchal, P., Cerna, H., Potesil, D., Janiczek, O., Zdrahal, Z., Mandl, M., 2011. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Anton. van Leeuw. 101, 561–573.
Laslett, D., Canbäck, B., 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 172–175.
Lee, E.Y., Lee, N.Y., Cho, K.-S., Ryu, H.W., 2006. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. Journal of Bioscience and Bioengineering 101, 309–314.
Lee, E.Y.E., Cho, K.-S.K., Ryu, H.W.H., 2005. Simultaneous removal of H2S and NH3 in biofilter inoculated with Acidithiobacillus thiooxidans TAS. J. Biosci. Bioeng. 99, 611–615.
Levicán, G., Bruscella, P., Guacunano, M., Inostroza, C., Bonnefoy, V., Holmes, D.S., Jedlicki, E., 2002. Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J. Bacteriol. 184, 1498–1501.
Liang, C., Chen, Y.-J., Chang, K.-J., 2009. Evaluation of persulfate oxidative wet scrubber for removing BTEX gases. J. Hazard. Mater. 164, 571–579.
Liu, Z., Borne, F., Ratouchniak, J., Bonnefoy, V., 2001. Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation. Hydrometallurgy 59, 339–345.
Lowe, T.M.T., Eddy, S.R.S., 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acid. Res. 25, 955–964.
Mackintosh, M.E., 1978. Nitrogen Fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol. 105, 215–218.
Malhotra, S., Tankhiwale, A.S., Rajvaidya, A.S., Pandey, R.A., 2002. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Bioresour. Technol. 85, 225–234.
Marchand, E.A., Silverstein, J., 2002. Influence of heterotrophic microbial growth on biological oxidation of pyrite. Environ. Sci. Technol. 36, 5483–5490.
Mesa, M., Andrades, J., Macias, M., Cantero, D., 2004. Biological oxidation of ferrous iron: study of bioreactor efficiency. J. Chem. Technol. Biotechnol. 79, 163–170.
Mesa, M., Macias, M., Cantero, D., 2000. A simplification of the protein assay method of Ramsay et al. for the quantification of Thiobacillus ferrooxidans in the presence of ferric precipitates. Appl. Microbiol. Biotechnol. 53, 722–725.
Mesa, M., Macias, M., Cantero, D., 2002. Biological iron oxidation by Acidithiobacillus ferrooxidans in a packed-bed bioreactor. Chem. Biochem. Eng. Q 16, 69–73.
Metzker, M.L., 2009. Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46.
Molchanov, S., Gendel, Y., Ioslvich, I., Lahav, O., 2007. Improved Experimental and Computational Methodology for Determining the Kinetic Equation and the Extant Kinetic Constants of Fe(II) Oxidation by Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 73, 1742–1752.
Morrison, D.A., 2010. How and where to look for tRNAs in Metazoan mitochondrial genomes, and what you might find when you get there. Online Archive arXiv.org, ID:arXiv:1001:3813v1 [q-bio-GN] retrieved, October 2, 2010.
Muthuraman, G., Chung, S.J., Shik Moon, Il, 2011. The combined removal of methyl mercaptan and hydrogen sulfide via an electro-reactor process using a low concentration of continuously regenerable Ag(II) active catalyst. J. Hazard. Mater. 193, 257–263.
Nancucheo, I., Johnson, D.B., 2009. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl. Environ. Microb. 76, 461–467.
Ng, K.Y., Sawada, R., Inoue, S., Kamimura, K., 2000. Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1. J. Biosci. Bioeng. 90, 199-203.
Nielsen, A.H., Hvitved-Jacobsen, T., Vollertsen, J., 2008. Effects of pH and iron concentrations on sulfide precipitation in wastewater collection systems. Water Environ. Res. 80, 380–384.
Nizami, A.-S., Murphy, J.D., 2010. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sust. Energ. Rev. 14, 1558–1568.
Ohmura, N., Sasaki, K., Matsumoto, N., Saiki, H., 2002. Anaerobic Respiration Using Fe3+, S0, and H2 in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans. J. Bacteriol. 184, 2081–2087.
Omri, I., Bouallagui, H., Aouidi, F., Godon, J.-J., Hamdi, M., 2011. H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresour. Technol. 102, 10202–10209.
Osorio, H., Martinez, V., Nieto, P.A., Holmes, D.S., Quatrini, R., 2008. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol. 8, 203-220.
Osorio, H., Martínez, V., Veloso, F.A., Pedroso, I., Valdes, J., 2008. Iron homeostasis strategies in acidophilic iron oxidizers: Studies in Acidithiobacillus and Leptospirillum. Hydrometallurgy. 94, 175-179.
Oyarzun, Arancibia, Canales, Aroca, 2003. Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem. 39, 165-170.
Pagella, C., De Faveri, D., 2000. H2S gas treatment by iron bioprocess. Chem. Eng. Sci. 55, 2185–2194.
Park, D., Lee, D.S., Joung, J.Y., Park, J.M., 2005. Comparison of different bioreactor systems for indirect H2S removal using iron-oxidizing bacteria. Process Biochem. 40, 1461–1467.
Peiffer, S., Gade, W., 2007. Reactivity of Ferric Oxides toward H2S at Low pH. Environ. Sci. Technol. 41, 3159–3164.
Peng, J.-B., Yan, W.-M., Bao, X.-Z., 1994. Solid medium for the genetic manipulation of Thiobacillus ferrooxidans. J. Gen. Appl. Microbiol. 40, 243–253.
Pipatmanomai, S., Kaewluan, S., Vitidsant, T., 2009. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl. Energ. 86, 669–674.
Pretorius, I.M., Rawlings, D.E., O'Neill, E.G., Jones, W.A., Kirby, R., Woods, D.R., 1987. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans. J. Bacteriol. 169, 367–370.
Pronk, J.T.J., Meijer, W.M.W., Hazeu, W.W., van Dijken, J.P.J., Bos, P.P., Kuenen, J.G.J., 1991. Growth of Thiobacillus ferrooxidans on Formic Acid. Appl. Environ. Microb. 57, 2057–2062.
Quatrini, R., Appia-Ayme, C., Denis, Y., Jedlicki, E., Holmes, D.S., Bonnefoy, V., 2009. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10, 394.
Quatrini, R., Appia-Ayme, C., Denis, Y., Ratouchniak, J., 2006. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy. 83, 263-272.
Quatrini, R., Jedlicki, E., Holmes, D.S., 2005. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J. Ind. Microbiol. Biotechnol. 32, 606–614.
Quatrini, R., Lefimil, C., Veloso, F.A., Pedroso, I., Holmes, D.S., Jedlicki, E., 2007. Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acid. Res. 35, 2153–2166.
Ramírez, M., Fernández, M., Granada, C., Le Borgne, S., Gómez, J.M., Cantero, D., 2011. Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresour. Technol. 102, 4047–4053.
Ramírez, P., Guiliani, N., Valenzuela, L., Beard, S., Jerez, C.A., 2004. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl. Environ. Microb. 70, 4491–4498.
Ramírez-Sáenz, D., Zarate-Segura, P.B., Guerrero-Barajas, C., García-Peña, E.I., 2009. H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. J. Hazard. Mater. 163, 1272–1281.
Rasi, S., Veijanen, A., Rintala, J., 2007. Trace compounds of biogas from different biogas production plants. Energy 32, 1375–1380.
Rawlings, D.E., 2002. Heavy metal mining using microbes. Microbiology 56, 65–91.
Rawlings, D.E., Kusano, T., 1994. Molecular genetics of Thiobacillus ferrooxidans. Microbiol. Rev. 58, 39–55.
Rawlings, D.E., Tributsch, H., Hansford, G.S., 1999. Reasons why “Leptospirillum-”like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 5–13.
Rivas, M.M., Seeger, M.M., Jedlicki, E.E., Holmes, D.S.D., 2007. Second acyl homoserine lactone production system in the extreme acidophile Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 73, 3225–3231.
Roberts, A., Pimentel, H., Trapnell, C., Pachter, L., 2011. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27, 2325–2329.
Rohwerder, T., 2003. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149, 1699–1710.
Rowe, O.F.O., Sánchez-España, J.J., Hallberg, K.B.K., Johnson, D.B.D., 2007. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ. Microbiol. 9, 1761–1771.
Ryckebosch, Drouillon, Vervaeren, 2011. Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35, 13–13.
Selkov, E., Overbeek, R., Kogan, Y., Chu, L., Vonstein, V., Holmes, D., Silver, S., Haselkorn, R., Fonstein, M., 2000. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans. Proc. Natl. Acad. Sci. 97, 3509–3514.
Sharma, P., 2003. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy 71, 285–292.
Son, H.J., Lee, J.H., 2005. H 2 S removal with an immobilized cell hybrid reactor. Process Biochem. 40, 2197–2203.
Soreanu, G., Falletta, P., Béland, M., Edmonson, K., Ventresca, B., Seto, P., 2010. Empirical modelling and dual-performance optimisation of a hydrogen sulphide removal process for biogas treatment. Bioresour. Technol. 101, 9387–9390.
Southam, G., Beveridge, T., 1993. Examination of lipopolysaccharide (O-antigen) populations of Thiobacillus ferrooxidans from two mine tailings. Appl. Environ. Microb. 59, 1283–1288.
Sugio, T., White, K.J., Shute, E., Choate, D., Blake, R.C., II, 1992. Existence of a hydrogen sulfide: ferric ion oxidoreductase in iron-oxidizing bacteria. Appl. Environ. Microb. 58, 431–433.
Tanaka, Y., 2002. A dual purpose packed-bed reactor for biogas scrubbing and methane-dependent water quality improvement applying to a wastewater treatment system consisting of UASB reactor and trickling filter. Bioresour. Technol. 84, 21–28.
Tuttle, J.H.J., Dugan, P.R.P., Apel, W.A.W., 1977. Leakage of cellular material from Thiobacillus ferrooxidans in the presence of organic acids. Appl. Environ. Microb. 33, 459–469.
Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A., Holmes, D.S., 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597.
Valdés, J., Veloso, F., Jedlicki, E., Holmes, D., 2003. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4, 51–51.
Vera, M., Guiliani, N., Jerez, C.A., 2003. Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy 71, 125–132.
Vogel, A., Jeffery, G., 1989. Vogel's textbook of quantitative chemical analysis. Longman: London 1989.
Wakai, S., Tsujita, M., Kikumoto, M., Manchur, M.A., Kanto, T., Kamimura, K., 2007. Purification and Characterization of Sulfide:Quinone Oxidoreductase from an Acidophilic Iron-Oxidizing Bacterium, Acidithiobacillus ferrooxidans. Biosci. Biotechnol. Biochem. 71, 2735–2742.
Wood, A.P., Aurikko, J.P., Kelly, D.P., 2004. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol. Rev. 28, 335–352.
Yahya, A., Johnson, D., 2002. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy 63, 181–188.
Yahya, A., Roberto, F., Johnson, D., 1999. Novel mineral-oxidizing bacteria from Montserrat (WI): physiological and phylogenetic characteristics. Process Met. 9, 729–739.
Yarzabal, A., 2004. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150, 2113–2123.
Yarzábal, A., Brasseur, G., Bonnefoy, V., 2002. Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol. Lett. 209, 189–195.
Yarzábal, A., Brasseur, G., Ratouchniak, J., Lund, K., Lemesle-Meunier, D., DeMoss, J.A., Bonnefoy, V., 2002. The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J. Bacteriol. 184, 313–317.
Zhao, R., Shangguan, J., Lou, Y., Song, J., Mi, J., Fan, H., 2010. Regeneration of Fe2O3-based high-temperature coal gas desulfurization sorbent in atmosphere with sulfur dioxide. Front. Chem. Eng. China 4, 423–428.
吳榮華, 2009. 我國能源安全體系建置. 經濟部能源報導 1–3.
王淳安, 2011. 高鐵氧化效率之嗜酸性硫鐵桿菌突變株篩選與生化活性研究. 國立交通大學分子醫學與生物工程研究所 1–84.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top