Acevedo, F., 2000. The use of reactors in biomining processes. Electron. J. Biotechnol. 3, 10–11.
Acosta, M., Beard, S., Ponce, J., Vera, M., Mobarec, J.C., Jerez, C.A., 2005. Identification of Putative Sulfurtransferase Genes in the Extremophilic Acidithiobacillus ferrooxidans ATCC 23270 Genome: Structural and Functional Characterization of the Proteins. OMICS 9, 13–29.
Alemzadeh, I., Kahrizi, E., Vossoughi, M., 2009. Bio-oxidation of ferrous ions by Acidithioobacillus ferrooxidans in a monolithic bioreactor. J. Chem. Technol. Biotechnol. 84, 504–510.
Angelidaki, I., Ellegaard, L., Ahring, B.K., 1993. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol. Bioeng. 42, 159–166.
Appia-Ayme, C., Guiliani, N., Ratouchniak, J., Bonnefoy, V., 1999. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl. Environ. Microb. 65, 4781–4787.
Appia-Ayme, C., Quatrini, R., Denis, Y., Denizot, F., Silver, S., 2006. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy. 83, 273-280.
Appia-Ayme, C.C., Bengrine, A.A., Cavazza, C.C., Giudici-Orticoni, M.T.M., Bruschi, M.M., Chippaux, M.M., Bonnefoy, V.V., 1998. Characterization and expression of the co-transcribed cyc1 and cyc2 genes encoding the cytochrome c4 (c552) and a high-molecular-mass cytochrome c from Thiobacillus ferrooxidans ATCC 33020. FEMS Microbiol Lett 167, 171–177.
Asai, S., Konishi, Y., Yabu, T., 1990. Kinetics of absorption of hydrogen sulfide into aqueous ferric sulfate solutions. AIChE J. 36, 1331–1338.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., 2000. Gene Ontology: tool for the unification of biology. Nature genetics 25, 25–29.
Barreto, M., Jedlicki, E., Holmes, D.S., 2005. Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 71, 2902–2909.
Barreto, M., Quatrini, R., Bueno, S., Arriagada, C., Valdes, J., 2003. Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence. Hydrometallurgy. 71, 97-105.
Barron, J.L., Lueking, D.R., 1990. Growth and Maintenance of Thiobacillus ferrooxidans Cells. Appl. Environ. Microb. 56, 2801–2806.
Barros, M.E.C., Rawlings, D.E., Woods, D.R., 1984. Mixotrophic Growth of a Thiobacillus ferrooxidans Strain. Appl. Environ. Microb. 47, 593–595.
Belmabkhout, Y., De Weireld, G., Sayari, A., 2009. Amine-Bearing Mesoporous Silica for CO 2and H 2S Removal from Natural Gas and Biogas. Langmuir 25, 13275–13278.
Bernstein, J.A.J., Khodursky, A.B.A., Lin, P.-H.P., Lin-Chao, S.S., Cohen, S.N.S., 2002. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci 99, 9697–9702.
Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G., 2004. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715.
Bozorgi, Y., Keshavarz, P., Taheri, M., Fathikaljahi, J., 2006. Simulation of a spray scrubber performance with Eulerian/Lagrangian approach in the aerosol removing process. J. Hazard. Mater. 137, 509–517.
Brasseur, G., Bruscella, P., Bonnefoy, V., Lemesle-Meunier, D., 2002. The bc(1) complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc(1) complex? Biochim. Biophys. Acta. 1555, 37–43.
Brasseur, G.G., Levican, G.G., Bonnefoy, V.V., Holmes, D.D., Jedlicki, E.E., Lemesle-Meunier, D.D., 2004. Apparent redundancy of electron transfer pathways via bc"1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim. Biophys. Acta. 1656, 13–13.
Bruscella, P., Appia-Ayme, C., Levicán, G., Ratouchniak, J., Jedlicki, E., Holmes, D.S., Bonnefoy, V., 2007. Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology (Reading, Engl.) 153, 102–110.
Caglayan, P., Yasyerli, S., Ar, I., Dogu, G., 2006. Kinetics of H2S Sorption on Manganese Oxide and Mn-Fe-Cu Mixed Oxide Prepared by the Complexation Technique. Int. J. Chem. React. Eng. 4, A18.
Chien, T.W., Chu, H., 2000. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution. J. Hazard. Mater. 80, 43–57.
Chiu, S.-Y., Kao, C.-Y., Huang, T.-T., Lin, C.-J., Ong, S.-C., Chen, C.-D., Chang, J.-S., Lin, C.-S., 2011. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour. Technol. 102, 9135–9142.
Chung, Y.-C., Ho, K.-L., Tseng, C.-P., 2006a. Treatment of high H2S concentrations by chemical absorption and biological oxidation process. Environ. Eng. Sci. 23, 942–953.
Chung, Y.-C., Ho, K.-L., Tseng, C.-P., 2007. Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S. J. Air Waste Manag. Assoc. 57, 337–347.
Chung, Y.C., Ho, K.L., Tseng, C.P., 2006b. Treatment of high H2S concentrations by chemical absorption and biological oxidation process. Environ. Eng. Sci. 23, 942–953.
Daoud, J., Karamanev, D., 2006. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner. Eng. 19, 960–967.
Dave, S.R., 2008. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor. Bioresour. Technol. 99, 7803–7806.
Davydov, A., Chuang, K., Sanger, A., 1998. Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces. J. Phys. Chem. B 102, 4745–4752.
Delić, V., Hopwood, D.A., Friend, E.J., 1970. Mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutat. Res.-Fund. Mol. M. 9, 167–182.
Demirbas, A., 2010. Methane Gas Hydrate (Green Energy and Technology), 1st ed. Springer.
Deng, L., Chen, H., Chen, Z., Liu, Y., Pu, X., Song, L., 2009. Process of simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine wastewater. Bioresour. Technol. 100, 5600–5608.
Drake, J.W., Charlesworth, B., Charlesworth, D., Crow, J.F., 1998. Rates of Spontaneous Mutation. Genetics. 148, 1667-1686.
Drobner, E., Huber, H., Stetter, K.O., 1990. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Microb. 56, 2922–2923.
Dugan, P.R., 1986. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. I. Preliminary experiments in controlled shaken flasks. Biotechnol. Bioeng. 29, 41–48.
Ebrahimi, S., Kleerebezem, R., van Loosdrecht, M., Heijnen, J., 2003. Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions. Chem. Eng. Sci. 58, 417–427.
Evangelou, V.P., Zhang, Y.L., 1995. A review: Pyrite oxidation mechanisms and acid mine drainage prevention. BEST 25, 141–199.
Farah, C.C., Vera, M.M., Morin, D.D., Haras, D.D., Jerez, C.A.C., Guiliani, N.N., 2005. Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 71, 7033–7040.
38. Fortuny, M., Baeza, J.A., Gamisans, X., Casas, C., Lafuente, J., Deshusses, M.A., Gabriel, D., 2008. Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71, 10–17.
Gabriel, D., 2003. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci 100, 6308–6312.
Gale, N.L.N., Beck, J.V.J., 1967. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans. J. Bacteriol. 94, 1052–1059.
García, E., Palacios, J.M., Alonso, L., Moliner, R., 2000. Performance of Mn and Cu Mixed Oxides as Regenerable Sorbents for Hot Coal Gas Desulfurization. Energy Fuels 14, 1296–1303.
Gendel, Y., Levi, N., Lahav, O., 2009. H2S (g) Removal Using a Modified, Low-pH Liquid Redox Sulfur Recovery (LRSR) Process with Electrochemical Regeneration of the Fe Catalyst Couple. Environ. Sci. Technol. 43, 8315–8319.
Giaveno, A., Lavalle, L., Guibal, E., Donati, E., 2008. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads. J. Microbiol. Meth. 72, 227–234.
Giro, M.E.A., Garcia, O., Jr., Zaiat, M., 2006. Immobilized cells of Acidithiobacillus ferrooxidans in PVC strands and sulfite removal in a pilot-scale bioreactor. Biochem. Eng. J. 28, 201–207.
Godini, H.R., Mowla, D., 2008. Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds. Chem. Eng. Res. Des. 86, 401–409.
Goncalves, J.J., Govind, R., 2008. H2S Abatement in a biotrickling filter using iron(III) foam media. Chemosphere 73, 1478–1483.
González-Sánchez, A., Revah, S., Deshusses, M.A., 2008. Alkaline Biofiltration of H2S Odors. Environ. Sci. Technol. 42, 7398–7404.
González-Toril, E., Llobet-Brossa, E., Casamayor, E.O., Amann, R., Amils, R., 2003. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microb. 69, 4853–4865.
Grande, C.A., Rodrigues, A.E., 2007. Layered Vacuum Pressure-Swing Adsorption for Biogas Upgrading. Ind. Eng. Chem. Res 46, 7844–7848.
Grishin, S.I., Bigham, J.M., Tuovinen, O.H., 1988. Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Appl. Environ. Microb. 54, 3101–3106.
Groenenberg, D.S., Pirovano, W., Gittenberger, E., Schilthuizen, M., 2011. The complete mitogenome of Cylindrus obtusus (Helicidae, Ariantinae) using Illumina next generation sequencing. BMC Genomics 13, 114–114.
Guerra, V.G., Gonçalves, J.A.S., Coury, J.R., 2009. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber. J. Hazard. Mater. 161, 351–359.
Harasimowicz, M.M., Orluk, P.P., Zakrzewska-Trznadel, G.G., Chmielewski, A.G.A., 2007. Application of polyimide membranes for biogas purification and enrichment. J. Hazard. Mater. 144, 698–702.
He, H., Zhang, C.-G., Xia, J.-L., Peng, A.-A., Yang, Y., Jiang, H.-C., Zheng, L., Ma, C.-Y., Zhao, Y.-D., Nie, Z.-Y., Qiu, G.-Z., 2008. Investigation of Elemental Sulfur Speciation Transformation Mediated by Acidithiobacillus ferrooxidans. Curr. Microbiol. 58, 300–307.
Heinhorst, S., Baker, S.H., Johnson, D.R., Davies, P.S., Cannon, G.C., Shively, J.M., 2002. Two Copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr. Microbiol. 45, 115–117.
Ho, K.-L., Chung, Y.-C., Lin, Y.-H., Tseng, C.-P., 2008. Microbial populations analysis and field application of biofilter for the removal of volatile-sulfur compounds from swine wastewater treatment system. J. Hazard. Mater. 152, 580–588.
Ho, K.-L., Chung, Y.-C., Tseng, C.-P., 2008. Continuous deodorization and bacterial community analysis of a biofilter treating nitrogen-containing gases from swine waste storage pits. Bioresour. Technol. 99, 2757–2765.
Ho, K.-L., Lin, W.-C., Chung, Y.-C., Chen, Y.-P., Tseng, C.-P., 2013. Elimination of high concentration hydrogen sulfide and biogas purification by chemical-biological process. Chemosphere 92, 1396–1401.
Horikawa, M.S., Rossi, F., Gimenes, M.L., Costa, C.M.M., Silva, M.G.C.D., 2004. Chemical absorption of H2S for biogas purification. Braz. J. Chem. Eng. 21.
Huang, L., Youzhou, J., Tingzhou, L., Quanguo, Z., 2010. Orthogonal Test About Biogas Upgrading by Pressured Water Scrubbing. Journal of Northeast Agricultural University 17 (4), 50-55
Huertas, J.I., Giraldo, N., Izquierdo, S., 2011. Removal of H2S and CO2 from Biogas by Amine Absorption. Mass Transfer in Chemical Engineering Processes
ISBN: 978-953-307-619-5.
Janssen, A.J.A., Ma, S.C.S., Lens, P.P., Lettinga, G.G., 1997. Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnol. Bioeng. 53, 32–40.
Jensen, A.B., Webb, C., 1995. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem. 30, 225–236.
Jiang, X., Yan, R., Tay, J.H., 2009a. Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration. J. Hazard. Mater. 164, 726–732.
Jiang, X., Yan, R., Tay, J.H., 2009b. Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere 75, 1350–1355.
Johnson, D.B., Okibe, N., Hallberg, K.B., 2005. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis. J. Microbiol. Meth. 60, 299–313.
Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acid. Res. 28, 27-30.
Kawabe, Y., Suto, K., Inoue, C., Chida, T., 1999. Enhancement of the specific growth rate of Thiobacillus ferrooxidans by diatomaceous earth. J. Biosci. Bioeng. 88, 374–379.
Kim, T.W., Kim, C.J., Chang, Y.K., Ryu, H.W., Cho, K.S., 2002. Development of an Optimal Medium for Continuous Ferrous Iron Oxidation by Immobilized Acidothiobacillus ferrooxidans Cells. Biotechnol. Prog. 18, 752–759.
Koo, J., Hong, J., Lee, H., Shin, S., 2010. Effects of the particle residence time and the spray droplet size on the particle removal efficiencies in a wet scrubber. Heat Mass Transfer 46, 649–656.
Krischan, J., Makaruk, A., Harasek, M., 2012. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas. J. Hazard. Mater. 215-216, 49–56.
Kucera, J., Bouchal, P., Cerna, H., Potesil, D., Janiczek, O., Zdrahal, Z., Mandl, M., 2011. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Anton. van Leeuw. 101, 561–573.
Laslett, D., Canbäck, B., 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 172–175.
Lee, E.Y., Lee, N.Y., Cho, K.-S., Ryu, H.W., 2006. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. Journal of Bioscience and Bioengineering 101, 309–314.
Lee, E.Y.E., Cho, K.-S.K., Ryu, H.W.H., 2005. Simultaneous removal of H2S and NH3 in biofilter inoculated with Acidithiobacillus thiooxidans TAS. J. Biosci. Bioeng. 99, 611–615.
Levicán, G., Bruscella, P., Guacunano, M., Inostroza, C., Bonnefoy, V., Holmes, D.S., Jedlicki, E., 2002. Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J. Bacteriol. 184, 1498–1501.
Liang, C., Chen, Y.-J., Chang, K.-J., 2009. Evaluation of persulfate oxidative wet scrubber for removing BTEX gases. J. Hazard. Mater. 164, 571–579.
Liu, Z., Borne, F., Ratouchniak, J., Bonnefoy, V., 2001. Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation. Hydrometallurgy 59, 339–345.
Lowe, T.M.T., Eddy, S.R.S., 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acid. Res. 25, 955–964.
Mackintosh, M.E., 1978. Nitrogen Fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol. 105, 215–218.
Malhotra, S., Tankhiwale, A.S., Rajvaidya, A.S., Pandey, R.A., 2002. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Bioresour. Technol. 85, 225–234.
Marchand, E.A., Silverstein, J., 2002. Influence of heterotrophic microbial growth on biological oxidation of pyrite. Environ. Sci. Technol. 36, 5483–5490.
Mesa, M., Andrades, J., Macias, M., Cantero, D., 2004. Biological oxidation of ferrous iron: study of bioreactor efficiency. J. Chem. Technol. Biotechnol. 79, 163–170.
Mesa, M., Macias, M., Cantero, D., 2000. A simplification of the protein assay method of Ramsay et al. for the quantification of Thiobacillus ferrooxidans in the presence of ferric precipitates. Appl. Microbiol. Biotechnol. 53, 722–725.
Mesa, M., Macias, M., Cantero, D., 2002. Biological iron oxidation by Acidithiobacillus ferrooxidans in a packed-bed bioreactor. Chem. Biochem. Eng. Q 16, 69–73.
Metzker, M.L., 2009. Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46.
Molchanov, S., Gendel, Y., Ioslvich, I., Lahav, O., 2007. Improved Experimental and Computational Methodology for Determining the Kinetic Equation and the Extant Kinetic Constants of Fe(II) Oxidation by Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 73, 1742–1752.
Morrison, D.A., 2010. How and where to look for tRNAs in Metazoan mitochondrial genomes, and what you might find when you get there. Online Archive arXiv.org, ID:arXiv:1001:3813v1 [q-bio-GN] retrieved, October 2, 2010.
Muthuraman, G., Chung, S.J., Shik Moon, Il, 2011. The combined removal of methyl mercaptan and hydrogen sulfide via an electro-reactor process using a low concentration of continuously regenerable Ag(II) active catalyst. J. Hazard. Mater. 193, 257–263.
Nancucheo, I., Johnson, D.B., 2009. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl. Environ. Microb. 76, 461–467.
Ng, K.Y., Sawada, R., Inoue, S., Kamimura, K., 2000. Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1. J. Biosci. Bioeng. 90, 199-203.
Nielsen, A.H., Hvitved-Jacobsen, T., Vollertsen, J., 2008. Effects of pH and iron concentrations on sulfide precipitation in wastewater collection systems. Water Environ. Res. 80, 380–384.
Nizami, A.-S., Murphy, J.D., 2010. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sust. Energ. Rev. 14, 1558–1568.
Ohmura, N., Sasaki, K., Matsumoto, N., Saiki, H., 2002. Anaerobic Respiration Using Fe3+, S0, and H2 in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans. J. Bacteriol. 184, 2081–2087.
Omri, I., Bouallagui, H., Aouidi, F., Godon, J.-J., Hamdi, M., 2011. H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresour. Technol. 102, 10202–10209.
Osorio, H., Martinez, V., Nieto, P.A., Holmes, D.S., Quatrini, R., 2008. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol. 8, 203-220.
Osorio, H., Martínez, V., Veloso, F.A., Pedroso, I., Valdes, J., 2008. Iron homeostasis strategies in acidophilic iron oxidizers: Studies in Acidithiobacillus and Leptospirillum. Hydrometallurgy. 94, 175-179.
Oyarzun, Arancibia, Canales, Aroca, 2003. Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem. 39, 165-170.
Pagella, C., De Faveri, D., 2000. H2S gas treatment by iron bioprocess. Chem. Eng. Sci. 55, 2185–2194.
Park, D., Lee, D.S., Joung, J.Y., Park, J.M., 2005. Comparison of different bioreactor systems for indirect H2S removal using iron-oxidizing bacteria. Process Biochem. 40, 1461–1467.
Peiffer, S., Gade, W., 2007. Reactivity of Ferric Oxides toward H2S at Low pH. Environ. Sci. Technol. 41, 3159–3164.
Peng, J.-B., Yan, W.-M., Bao, X.-Z., 1994. Solid medium for the genetic manipulation of Thiobacillus ferrooxidans. J. Gen. Appl. Microbiol. 40, 243–253.
Pipatmanomai, S., Kaewluan, S., Vitidsant, T., 2009. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl. Energ. 86, 669–674.
Pretorius, I.M., Rawlings, D.E., O'Neill, E.G., Jones, W.A., Kirby, R., Woods, D.R., 1987. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans. J. Bacteriol. 169, 367–370.
Pronk, J.T.J., Meijer, W.M.W., Hazeu, W.W., van Dijken, J.P.J., Bos, P.P., Kuenen, J.G.J., 1991. Growth of Thiobacillus ferrooxidans on Formic Acid. Appl. Environ. Microb. 57, 2057–2062.
Quatrini, R., Appia-Ayme, C., Denis, Y., Jedlicki, E., Holmes, D.S., Bonnefoy, V., 2009. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10, 394.
Quatrini, R., Appia-Ayme, C., Denis, Y., Ratouchniak, J., 2006. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy. 83, 263-272.
Quatrini, R., Jedlicki, E., Holmes, D.S., 2005. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J. Ind. Microbiol. Biotechnol. 32, 606–614.
Quatrini, R., Lefimil, C., Veloso, F.A., Pedroso, I., Holmes, D.S., Jedlicki, E., 2007. Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acid. Res. 35, 2153–2166.
Ramírez, M., Fernández, M., Granada, C., Le Borgne, S., Gómez, J.M., Cantero, D., 2011. Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresour. Technol. 102, 4047–4053.
Ramírez, P., Guiliani, N., Valenzuela, L., Beard, S., Jerez, C.A., 2004. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl. Environ. Microb. 70, 4491–4498.
Ramírez-Sáenz, D., Zarate-Segura, P.B., Guerrero-Barajas, C., García-Peña, E.I., 2009. H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. J. Hazard. Mater. 163, 1272–1281.
Rasi, S., Veijanen, A., Rintala, J., 2007. Trace compounds of biogas from different biogas production plants. Energy 32, 1375–1380.
Rawlings, D.E., 2002. Heavy metal mining using microbes. Microbiology 56, 65–91.
Rawlings, D.E., Kusano, T., 1994. Molecular genetics of Thiobacillus ferrooxidans. Microbiol. Rev. 58, 39–55.
Rawlings, D.E., Tributsch, H., Hansford, G.S., 1999. Reasons why “Leptospirillum-”like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 5–13.
Rivas, M.M., Seeger, M.M., Jedlicki, E.E., Holmes, D.S.D., 2007. Second acyl homoserine lactone production system in the extreme acidophile Acidithiobacillus ferrooxidans. Appl. Environ. Microb. 73, 3225–3231.
Roberts, A., Pimentel, H., Trapnell, C., Pachter, L., 2011. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27, 2325–2329.
Rohwerder, T., 2003. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149, 1699–1710.
Rowe, O.F.O., Sánchez-España, J.J., Hallberg, K.B.K., Johnson, D.B.D., 2007. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ. Microbiol. 9, 1761–1771.
Ryckebosch, Drouillon, Vervaeren, 2011. Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35, 13–13.
Selkov, E., Overbeek, R., Kogan, Y., Chu, L., Vonstein, V., Holmes, D., Silver, S., Haselkorn, R., Fonstein, M., 2000. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans. Proc. Natl. Acad. Sci. 97, 3509–3514.
Sharma, P., 2003. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy 71, 285–292.
Son, H.J., Lee, J.H., 2005. H 2 S removal with an immobilized cell hybrid reactor. Process Biochem. 40, 2197–2203.
Soreanu, G., Falletta, P., Béland, M., Edmonson, K., Ventresca, B., Seto, P., 2010. Empirical modelling and dual-performance optimisation of a hydrogen sulphide removal process for biogas treatment. Bioresour. Technol. 101, 9387–9390.
Southam, G., Beveridge, T., 1993. Examination of lipopolysaccharide (O-antigen) populations of Thiobacillus ferrooxidans from two mine tailings. Appl. Environ. Microb. 59, 1283–1288.
Sugio, T., White, K.J., Shute, E., Choate, D., Blake, R.C., II, 1992. Existence of a hydrogen sulfide: ferric ion oxidoreductase in iron-oxidizing bacteria. Appl. Environ. Microb. 58, 431–433.
Tanaka, Y., 2002. A dual purpose packed-bed reactor for biogas scrubbing and methane-dependent water quality improvement applying to a wastewater treatment system consisting of UASB reactor and trickling filter. Bioresour. Technol. 84, 21–28.
Tuttle, J.H.J., Dugan, P.R.P., Apel, W.A.W., 1977. Leakage of cellular material from Thiobacillus ferrooxidans in the presence of organic acids. Appl. Environ. Microb. 33, 459–469.
Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A., Holmes, D.S., 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597.
Valdés, J., Veloso, F., Jedlicki, E., Holmes, D., 2003. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4, 51–51.
Vera, M., Guiliani, N., Jerez, C.A., 2003. Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy 71, 125–132.
Vogel, A., Jeffery, G., 1989. Vogel's textbook of quantitative chemical analysis. Longman: London 1989.
Wakai, S., Tsujita, M., Kikumoto, M., Manchur, M.A., Kanto, T., Kamimura, K., 2007. Purification and Characterization of Sulfide:Quinone Oxidoreductase from an Acidophilic Iron-Oxidizing Bacterium, Acidithiobacillus ferrooxidans. Biosci. Biotechnol. Biochem. 71, 2735–2742.
Wood, A.P., Aurikko, J.P., Kelly, D.P., 2004. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol. Rev. 28, 335–352.
Yahya, A., Johnson, D., 2002. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy 63, 181–188.
Yahya, A., Roberto, F., Johnson, D., 1999. Novel mineral-oxidizing bacteria from Montserrat (WI): physiological and phylogenetic characteristics. Process Met. 9, 729–739.
Yarzabal, A., 2004. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150, 2113–2123.
Yarzábal, A., Brasseur, G., Bonnefoy, V., 2002. Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol. Lett. 209, 189–195.
Yarzábal, A., Brasseur, G., Ratouchniak, J., Lund, K., Lemesle-Meunier, D., DeMoss, J.A., Bonnefoy, V., 2002. The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J. Bacteriol. 184, 313–317.
Zhao, R., Shangguan, J., Lou, Y., Song, J., Mi, J., Fan, H., 2010. Regeneration of Fe2O3-based high-temperature coal gas desulfurization sorbent in atmosphere with sulfur dioxide. Front. Chem. Eng. China 4, 423–428.
吳榮華, 2009. 我國能源安全體系建置. 經濟部能源報導 1–3.王淳安, 2011. 高鐵氧化效率之嗜酸性硫鐵桿菌突變株篩選與生化活性研究. 國立交通大學分子醫學與生物工程研究所 1–84.