跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖晨瑄
研究生(外文):Liao, Chen-Hsuan
論文名稱:奈米級金氧半場效電晶體和鰭狀場效電晶體之隨機擾動訊號及製程變異引致臨界電壓偏移建模化
論文名稱(外文):Modeling the Statistical Variability of Process and Random Telegraph Signals Induced Threshold Voltage Shifts in Nanoscale MOSFETs and FinFETs
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Chen, Ming-Jer
口試委員:林大文蔡慶威游國豐
口試委員(外文):Lin, Da-WenTsai, Ching-WeiYou, Kuo-Feng
口試日期:2016-10-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:63
中文關鍵詞:鰭狀場效電晶體隨機擾動訊號製程變異
外文關鍵詞:FinFETRTSProcess
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在金氧半場效電晶體和鰭狀場效電晶體中,電子在氧化層和矽通道交界面的釋放和捕捉的現象被稱為隨機擾動訊號,此現象對於奈米級半導體元件的可靠度是一個重要的議題。在這篇論文裡,透過Matlab和三維電腦科技輔助軟體模擬的幫助,我們不但可以重現隨機擾動訊號的實驗量測數據,甚至可以針對金氧半場效電晶體和鰭狀場效電晶體所會遭遇到的擾動震幅做出預測。我們還提出一個mloc-loc邊界線,其中的mloc和loc分別是通道區域電流的平均值和標準差。這個關鍵的mloc-loc邊界線將mloc-loc圖分成允許區與禁止區。允許區內的mloc-loc座標包含了所有可能性,因此我們才能重現出實驗量測數據。不同元件大小與不同的金屬閘極顆粒大小也都必須各有大量模擬。在這份論文裡也考慮了金屬閘極顆粒化功函數擾動,這因素使元件的臨界電壓擾動會更加嚴重。藉由機率統計,我們重現了Intel 14奈米製程的元件數據,並提供電路設計者下個世代隨機擾動訊號的指引。
The trapping and de-trapping of a single electron at the Si-SiO2 interface of planar bulk metal -oxide-semiconductor field effect transistors (MOSFETs) and fin-shape field effect transistors (FinFETs), which is called random telegraph signals (RTSs), has been a well-known issue for the reliability of the nanoscale device. In this work, with the help of Matlab and 3-D technology-aided design (TCAD), we not only reproduce RTS experimental data but also make a prediction of possible worst case threshold-voltage fluctuation amplitude in both MOSFETs and FinFETs. We also propose a mloc-σloc boundary where mloc and σloc are the mean and the standard deviation, respectively, of the channel local current density. The critical mloc-loc curve divides the plot into the allowed and forbidden region. The allowed region includes all possible (mloc, σloc) sets that help us to reproduce experimental data. Furthermore, we take metal gate granularity (MGG) percolation into account. RTS under MGG percolation causes the device threshold-voltage fluctuating more serious. Necessarily, a large number of simulation tasks are carried out to investigate it. Different device sizes and different average metal grain sizes are considered in this work. By statistics, we can finely reproduce Intel’s data and even give a next-generation guide-line for circuit designers.
摘要 I
Abstract II
Acknowledgement III
Chapter 1 Introduction 1
Chapter 2 Statistical Model for the Headed and Tail Distribution of Random Telegraph Signal in MOSFET 4
2.1 Introduction 4
2.2 Statistical Model and Validation for Uniform Channel MOSFET 6
2.3 Boundary Line in mloc-σloc for MOSFET 7
Chapter 3 Statistical Model for the Random Telegraph Signal in Bulk FinFETs 8
3.1 Introduction 8
3.2 Finding the Maximum of ΔId/Id in FinFETs 9
3.3 Regrouping of FinFET Gate Planes 10
3.4 Two Variables Transformed Into One Variable 10
3.5 Parameter Extraction Method 15
3.5 Model Validation 15
3.6 New Criteria and the Boundary Line in mloc-σloc for MOSFET 16
3.7 Discussion 17
Chapter 4 Threshold Voltage Variation due to Random Telegraph Signals in Bulk FinFET under Metal Gate Granularity 18
4.1 Introduction 18
4.2 MGG Variation 19
4.3 RTS under MGG 20
4.4 Discussion 21
Chapter 5 Conclusion 23
References 24
[1] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. a. Fetter, R. W. Epworth, and D. M. Tennant, “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f ) Noise,” Phys. Rev. Lett., vol. 52, no. 3, pp. 228–231, Jan. 1984.
[2] M. J. Chen and M. P. Lu, “Electrically probing atomic-sized oxide traps,: in Encyclopedia of Nanoscience and Nanotechnology, vol. 13, H. S. Nalwa, Ed. Valencia, CA, USA: American Scientific Publishers, 2011, pp. 243-261
[3] M. Schulz, “Coulomb energy of traps in semiconductor space-charge regions”, J. Appl. Phys., vol. 74, no. 4, pp.2649-2657, Aug. 1993.
[4] M. P. Lu and M. J. Chen, “Oxide-trap-enhanced Coulomb energy in a metal-oxide-semiconductor system”, Phys. Rev. B, vol. 72, no. 23, p. 078301, Dec. 2005.
[5] A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies, “RTS amplitudes in decananometer MOSFETs: 3-D simulation study”, IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 839-845, Mar. 2003
[6] K. Sonda, K. Ishikawa, T. Eimori, and O. Tsuchiya, “Discrete dopant effects on statistical variation of random telegraph signal magnitude,” IEEE Trans. Electron Devices, vol. 54, no. 8, pp. 1918-1925, Aug. 2007.
[7] A. Ghetti, C. M. Compagnoni, A. S. Spinelli, and A. Visconti, “Comprehensive analysis of random telegraph noise instability and its scaling in deca–nanometer flash memories,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1746–1752, Aug. 2009.
[8] N. Ashraf and D. Vasileska, “Static analysis of random telegraph noise in a 45-nm channel length conventional MOSFET device: Threshold voltage and on-current fluctuations,” IEEE Trans. Nanotechnol., vol. 10, no. 6, pp. 1394–1400, Nov. 2011.
[9] M. Agostinelli, J. Hicks, J. Xu, B. Woolery, etc., “Erratic fluctuations of SRAM cache Vmin at the 90nm process technology node,” in IEDM Tech. Dig., 2005, pp. 655–658.
[10] H. Kurata, K. Otsuga, a. Kotabe, S. Kajiyama, T. Osabe, Y. Sasago, S. Narumi, K. Tokami, S. Kamohara, and O. Tsuchiya, “The Impact of Random Telegraph Signals on the Scaling of Multilevel Flash Memories,” in VLSI Tech., 2006, pp. 105–106.
[11] H. H. Mueller and M. Schulz, “Random telegraph signal: An atomic probe of the local current in field-effect transistors,” J. Appl. Phys., vol. 83, no. 3, pp. 1734-1741, Feb. 1998.
[12] M. J. Chen, K. C. Tu, H. H. Wang, C. L. Chen, S. Y. Lai and Y. S. Liu, “A Statistical Model for the Headed and Tail Distributions of Random Telegraph Signal Magnitudes in Nanoscale MOSFETs,” IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 2495-2502, Jul. 2014
[13] M. J. Chen, et al., “Graphically transforming Mueller-Schulz percolation criteria to random telegraph signal magnitudes in scaled FETs,” IEEE EDL, p. 217, 2015.
[14] X. Wang, A. R. Brown, N. M. Idris, S. Markov, G. Roy and A. Asenov, “Statistical threshold-voltage variability in scaled decananometer bulk HKMG MOSFETs: a full-scale 3-D simulation scaling study,” IEEE Trans. On Elec. Dev., Vol. 58, No. 8, pp. 2293-2301, Aug. 2011.
[15] K. J. Kuhn, et al., “Process technology variation,” IEEE Trans. on Elec. Dev., Vol. 58, No. 8, pp. 2197-2208, Aug. 2011.
[16] J. Franco, S. Graziano, B. Kaczer, F. Crupi, L.-Å. Ragnarsson, T. Grasser, and G. Groeseneken, “BTI reliability of ultra-thin EOT MOSFETs for sub-threshold logic,” Microelectronics Reliability, vol. 52, pp. 1932-1935, Jul. 2012.
[17] TCAD Sentaurus, version H-2013.03, Synopsys, Mar. 2013.
[18] F. Adamu-Lema, etc, “Comprehensive ‘Atomistic Simulation of Statistical Variability and Reliability in 14 nm Generation FinFETs,” IEEE SISPAD, Sep. 2015.
[19] S. H. Chou, M. L. Fan, etc., “Investigation and Comparison of Work Function Variation for FinFET and UTB SOI Devices Using a Voronoi Approach”, IEEE TED, Vol. 60, No. 4, April 2013
[20] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists 8th ed., Chapter 7, pp. 211-225
[21] D. J. Frank, Y. Taur, M. Ieong, and H.-S. P. Wong, “Monte Carlo modeling of threshold variation due to dopant fluctuations,” in Symp VLSI Technol. Dig. Tech. Papers, 1999, pp. 169–170.
[22] A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFET’s: A 3-D ‘atomistic’ simulation study,” IEEE Trans. Electron Dev., vol. 45, no. 12, pp. 2505–2513, Dec. 1998.
[23] G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” IEEE Trans. Electron Dev., vol. 53, no. 12, pp. 3063–3070, Dec. 2006.
[24] Y.-S. Wu, M.-L. Fan, and P. Su, “Investigation of switching-time variations for nanoscale MOSFETs using the effective-drive-current approach,” IEEE Electron Device Lett., vol. 31, no. 2, pp. 162–164, Feb. 2010.
[25] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in nanoscale FinFETs,” in Proc. IEEE Int. Electron Dev. Meeting, Dec. 2011, pp. 5.4.1–5.4.4.
[26] C.-H. Lin, W. Haensch, P. Oldiges, H. Wang, R. Williams, J. Chang, M. Guillorn, A. Bryant, T. Yamashita, T. Standaert, H. Bu, E. Leobandung, and M. Khare, “Modeling of width-quantization-induced variations in logic FinFETs for 22 nm and beyond,” in Proc. Symp VLSI Technol., Jun. 2011, pp. 16–17.
[27] A. R. Brown, N. M. Idris, J. R. Watling, and A. Asenov, “Impact of metal gate granularity on threshold voltage variability: A full-scale threedimensional statistical simulation study,” IEEE Electron Device Lett., vol. 31, no. 11, pp. 1199–1201, Nov. 2010.
[28] H. Dadgour, etc., “Statistical modeling of metalgate Work-Function Variability in emerging device technologies and implications for circuit design,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2008, pp. 270–277.
[29] H. Dadgour, K. Endo, V. De, and K. Banerjee, “Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for SRAM reliability,” in Proc. IEEE Int. Electron Dev. Meeting, Dec. 2008, pp. 705–708.
[30] Louis Gerrer, A. R. Brown, etc., “Accurate Simulation of Transistor-Level Variability for the Purposes of TCAD-Based Device-Technology Cooptimization”, IEEE TED, Vol. 62, No. 6, June 2015.
[31] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “RTS Amplitude Distribution in 20nm SOI FinFETs subject to Statistical Variability,” IEEE SISPAD, Sep. 2012
[32] S. Natarajan, et al., “A 14nm logic technology featuring 2nd-generation FinFET transistors, air-gapped interconnects, self-aligned double pattering and a 0.0588 μm2 SRAM cell size,” in IEDM, 2014, p. 71.
[33] M. D. Giles, et al., “High sigma measurement of random threshold voltage variation in 14nm logic FinFET technology,” in Sym. VLSI Tech., 2015, p. T150.
[34] S. Dongaonkar, et al., “Random telegraph noise (RTN) in 14nm logic technology: High volume data extraction and analysis,” in Sym. VLSI Tech., 2016, p. 176
[35] S. M. Amoroso, L. Gerrer, S. Markov, F. Adamu-Lema, and A. Asenov, “RTN and BTI in nanoscale MOSFETs: A comprehensive statistical simulation study,” Solid. State. Electron., vol. 84, pp. 120–126, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top