|
[1] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. a. Fetter, R. W. Epworth, and D. M. Tennant, “Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency (1/f ) Noise,” Phys. Rev. Lett., vol. 52, no. 3, pp. 228–231, Jan. 1984. [2] M. J. Chen and M. P. Lu, “Electrically probing atomic-sized oxide traps,: in Encyclopedia of Nanoscience and Nanotechnology, vol. 13, H. S. Nalwa, Ed. Valencia, CA, USA: American Scientific Publishers, 2011, pp. 243-261 [3] M. Schulz, “Coulomb energy of traps in semiconductor space-charge regions”, J. Appl. Phys., vol. 74, no. 4, pp.2649-2657, Aug. 1993. [4] M. P. Lu and M. J. Chen, “Oxide-trap-enhanced Coulomb energy in a metal-oxide-semiconductor system”, Phys. Rev. B, vol. 72, no. 23, p. 078301, Dec. 2005. [5] A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies, “RTS amplitudes in decananometer MOSFETs: 3-D simulation study”, IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 839-845, Mar. 2003 [6] K. Sonda, K. Ishikawa, T. Eimori, and O. Tsuchiya, “Discrete dopant effects on statistical variation of random telegraph signal magnitude,” IEEE Trans. Electron Devices, vol. 54, no. 8, pp. 1918-1925, Aug. 2007. [7] A. Ghetti, C. M. Compagnoni, A. S. Spinelli, and A. Visconti, “Comprehensive analysis of random telegraph noise instability and its scaling in deca–nanometer flash memories,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1746–1752, Aug. 2009. [8] N. Ashraf and D. Vasileska, “Static analysis of random telegraph noise in a 45-nm channel length conventional MOSFET device: Threshold voltage and on-current fluctuations,” IEEE Trans. Nanotechnol., vol. 10, no. 6, pp. 1394–1400, Nov. 2011. [9] M. Agostinelli, J. Hicks, J. Xu, B. Woolery, etc., “Erratic fluctuations of SRAM cache Vmin at the 90nm process technology node,” in IEDM Tech. Dig., 2005, pp. 655–658. [10] H. Kurata, K. Otsuga, a. Kotabe, S. Kajiyama, T. Osabe, Y. Sasago, S. Narumi, K. Tokami, S. Kamohara, and O. Tsuchiya, “The Impact of Random Telegraph Signals on the Scaling of Multilevel Flash Memories,” in VLSI Tech., 2006, pp. 105–106. [11] H. H. Mueller and M. Schulz, “Random telegraph signal: An atomic probe of the local current in field-effect transistors,” J. Appl. Phys., vol. 83, no. 3, pp. 1734-1741, Feb. 1998. [12] M. J. Chen, K. C. Tu, H. H. Wang, C. L. Chen, S. Y. Lai and Y. S. Liu, “A Statistical Model for the Headed and Tail Distributions of Random Telegraph Signal Magnitudes in Nanoscale MOSFETs,” IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 2495-2502, Jul. 2014 [13] M. J. Chen, et al., “Graphically transforming Mueller-Schulz percolation criteria to random telegraph signal magnitudes in scaled FETs,” IEEE EDL, p. 217, 2015. [14] X. Wang, A. R. Brown, N. M. Idris, S. Markov, G. Roy and A. Asenov, “Statistical threshold-voltage variability in scaled decananometer bulk HKMG MOSFETs: a full-scale 3-D simulation scaling study,” IEEE Trans. On Elec. Dev., Vol. 58, No. 8, pp. 2293-2301, Aug. 2011. [15] K. J. Kuhn, et al., “Process technology variation,” IEEE Trans. on Elec. Dev., Vol. 58, No. 8, pp. 2197-2208, Aug. 2011. [16] J. Franco, S. Graziano, B. Kaczer, F. Crupi, L.-Å. Ragnarsson, T. Grasser, and G. Groeseneken, “BTI reliability of ultra-thin EOT MOSFETs for sub-threshold logic,” Microelectronics Reliability, vol. 52, pp. 1932-1935, Jul. 2012. [17] TCAD Sentaurus, version H-2013.03, Synopsys, Mar. 2013. [18] F. Adamu-Lema, etc, “Comprehensive ‘Atomistic Simulation of Statistical Variability and Reliability in 14 nm Generation FinFETs,” IEEE SISPAD, Sep. 2015. [19] S. H. Chou, M. L. Fan, etc., “Investigation and Comparison of Work Function Variation for FinFET and UTB SOI Devices Using a Voronoi Approach”, IEEE TED, Vol. 60, No. 4, April 2013 [20] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists 8th ed., Chapter 7, pp. 211-225 [21] D. J. Frank, Y. Taur, M. Ieong, and H.-S. P. Wong, “Monte Carlo modeling of threshold variation due to dopant fluctuations,” in Symp VLSI Technol. Dig. Tech. Papers, 1999, pp. 169–170. [22] A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFET’s: A 3-D ‘atomistic’ simulation study,” IEEE Trans. Electron Dev., vol. 45, no. 12, pp. 2505–2513, Dec. 1998. [23] G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” IEEE Trans. Electron Dev., vol. 53, no. 12, pp. 3063–3070, Dec. 2006. [24] Y.-S. Wu, M.-L. Fan, and P. Su, “Investigation of switching-time variations for nanoscale MOSFETs using the effective-drive-current approach,” IEEE Electron Device Lett., vol. 31, no. 2, pp. 162–164, Feb. 2010. [25] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in nanoscale FinFETs,” in Proc. IEEE Int. Electron Dev. Meeting, Dec. 2011, pp. 5.4.1–5.4.4. [26] C.-H. Lin, W. Haensch, P. Oldiges, H. Wang, R. Williams, J. Chang, M. Guillorn, A. Bryant, T. Yamashita, T. Standaert, H. Bu, E. Leobandung, and M. Khare, “Modeling of width-quantization-induced variations in logic FinFETs for 22 nm and beyond,” in Proc. Symp VLSI Technol., Jun. 2011, pp. 16–17. [27] A. R. Brown, N. M. Idris, J. R. Watling, and A. Asenov, “Impact of metal gate granularity on threshold voltage variability: A full-scale threedimensional statistical simulation study,” IEEE Electron Device Lett., vol. 31, no. 11, pp. 1199–1201, Nov. 2010. [28] H. Dadgour, etc., “Statistical modeling of metalgate Work-Function Variability in emerging device technologies and implications for circuit design,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2008, pp. 270–277. [29] H. Dadgour, K. Endo, V. De, and K. Banerjee, “Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for SRAM reliability,” in Proc. IEEE Int. Electron Dev. Meeting, Dec. 2008, pp. 705–708. [30] Louis Gerrer, A. R. Brown, etc., “Accurate Simulation of Transistor-Level Variability for the Purposes of TCAD-Based Device-Technology Cooptimization”, IEEE TED, Vol. 62, No. 6, June 2015. [31] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “RTS Amplitude Distribution in 20nm SOI FinFETs subject to Statistical Variability,” IEEE SISPAD, Sep. 2012 [32] S. Natarajan, et al., “A 14nm logic technology featuring 2nd-generation FinFET transistors, air-gapped interconnects, self-aligned double pattering and a 0.0588 μm2 SRAM cell size,” in IEDM, 2014, p. 71. [33] M. D. Giles, et al., “High sigma measurement of random threshold voltage variation in 14nm logic FinFET technology,” in Sym. VLSI Tech., 2015, p. T150. [34] S. Dongaonkar, et al., “Random telegraph noise (RTN) in 14nm logic technology: High volume data extraction and analysis,” in Sym. VLSI Tech., 2016, p. 176 [35] S. M. Amoroso, L. Gerrer, S. Markov, F. Adamu-Lema, and A. Asenov, “RTN and BTI in nanoscale MOSFETs: A comprehensive statistical simulation study,” Solid. State. Electron., vol. 84, pp. 120–126, 2013.
|