跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳皓昱
研究生(外文):CHEN,HAO-YU
論文名稱:應用資料探勘技術建構有效的盈餘管理預測模型
論文名稱(外文):Effective Earning Management Prediction Models Using Data Mining
指導教授:齊徳彰
指導教授(外文):CHI,DER-JANG
口試委員:廖益興齊徳彰李慕萱
口試委員(外文):LIAO,YIH-HSINGCHI,DER-JANGLEE,MU-SHANG
口試日期:2019-06-21
學位類別:碩士
校院名稱:中國文化大學
系所名稱:會計學系
學門:商業及管理學門
學類:會計學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:41
中文關鍵詞:資料探勘盈餘管理支援向量機決策樹
外文關鍵詞:data miningearnings managementsupport vector machinedecision tree
相關次數:
  • 被引用被引用:1
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:2
世界各國政府皆以開始防範盈餘管理行為,但還是會有少數企業逐漸面臨倒閉時,開始進行盈餘管理,管理階層會因此操縱或是改變原先模式而去評估及解決,以減少盈餘管理較嚴重的程度發生以及被外部投資人發現的比率,超過一定程度時便會成為舞弊公司,無論企業內部或是外部皆會走向沒落。本研究選用資料來自於臺灣經濟新報資料庫(TEJ),選用期間為2010-2017年臺灣電子產業,以往學者多利用迴歸模式作為分析,近幾年學者利用資料探勘模式(data mining)的準確率相對於以往較為提高。故本研究以支援向量機(support vector machine)作為第一階段的變數篩選,選擇對盈餘管理較有重要性之變數,再利用決策樹CART、決策樹CHAID、決策樹C5.0以及決策樹QUEST作為第二階段模型,以相互搭配的方式選擇較為準確的盈餘管理預測模型。實證結果顯示,由支援向量機搭配決策樹C5.0(SVM-C5.0)的模型為最佳預測之模型,準確率為88.11%。
The selection data of this study comes from the Taiwan Economic News (TEJ). The selection period is from Taiwan to the electronic industry in 2009-2017. In the past, scholars used the regression model as an analysis. In recent years, the accuracy of data mining by scholars is relative to that of data mining. In the past, it has improved. Therefore, this study uses the support vector machine as the first-stage variable screening, selecting the variables that are more important for earnings management, and then using the decision tree CART, decision tree CHAID. As the second stage model, decision tree C5.0 and decision tree QUEST are used to select a more accurate earnings management prediction model. The empirical results show that the model of support vector machine matching decision tree C5.0 (SVM-C5.0) is the best prediction model with an accuracy rate of 88.11%.
中文摘要 ..................... iii
英文摘要 ..................... iv
誌謝辭  ..................... v
內容目錄 ..................... vi
表目錄  ..................... vii
圖目錄  ..................... viii
第一章  緒論................... 1
  第一節  研究背景與動機............ 1
  第二節  研究目的............... 2
  第三節  論文架構與研究流程圖......... 3
第二章  文獻探討................. 6
  第一節  盈餘管理的定義及相關文獻....... 6
  第二節 盈餘管理的模型探討......... 8
第三章  研究方法................. 11
  第一節  研究設計............... 11
  第二節  盈餘管理之程度分類.......... 14
  第三節  資料探勘技術與應用.......... 16
第四章  實證結果與分析.............. 21
  第一節  敘述性統計.............. 21
  第二節  變數篩選............... 22
  第三節  盈餘管理預測模型........... 23
第五章  結論與建議................ 32
  第一節  研究結論............... 32
  第二節  研究建議............... 32
參考文獻 ................... 34

一、中文部分

李孟純(2011),應用隨機性統計邊界法與決策樹進行生物科技上市(櫃)公司之效率分析,南台科技大學企業管理學系未出版之碩士論文。

李建然(2000),影響上市公司自願性盈餘預測頻率之研究,會計評論,32,49-79。

李威霖(2008),應用管理決策分析於土石流避難決策之研究,成功大學水利及海洋工程學系未出版之學位論文,1-144。

林有志,邱炳雲,何韋霆(2009),盈餘門檻與盈餘管理行為之研究, 會計與財金研究,2(2),1-16。

林欣瑾,徐銘甫,張清和(2014),增量式人工智慧技術於財務報表舞弊之偵測,第5屆鑑識會計高峰論壇研討會。

林嬋娟,洪櫻芬,薛敏正(1997),財務困難公司之盈餘管理實證研究,管理學報,14 (1),15-38。

許溪南,歐陽豪,陳慶芳(2007),公司治理、盈餘管理與財務預警模型之建構,會計與公司治理,4(1)。

張麗娟,許佳豪,張耀元(2012),建構臺灣電子業財務預警-以資料探勘技術分析,臺灣銀行季刊,63(1),182-217。

黃泓瑋,余尚武,劉憶瑩(2009),動態避險模型之建立-以遠期外匯與一籃子貨幣避險策略為例,第15屆海峽兩岸資訊管理發展與策略研討會。

詹勳錫(2010),先期規劃對專案績效之影響—利用ANN與SVM進行預測,國立高雄應用科技大學土木工程與防災科技研究所未出版之碩士論文。

鄭雅妮(2008),台灣上市櫃公司建構危機預警模型之研究-以MDA、Logit、BPN、SVM、GA-SVM、AIS方法之應用,元智大學會計學系未出版之學位論文,1-84。

劉翔瑜(2006),倒傳遞類神經網路、支援向量迴歸於日經225現貨指數之預測及交易策略之研究,天主教輔仁大學金融研究所未出版之碩士論文。

二、英文部分

Aboody, D. & Kasznik, R. (2000). CEO stock option awards and the timing of corporate voluntary disclosures. Journal of Ac-counting and Economics, 29(1), 73-100.

Ashbaugh, H., LaFond, R. , & Mayhew, B. W. (2003). Do Nonaudit Services Compromise Auditor Independence? Further Evi-dence. The Accounting Review, 78(3), 611-639.

Bartov, E., Gul, F. A., & Tsui, J. S. L. (2001). Discretionary Accruals Model and Audit Qualification. Journal of Accounting and Economics, 30, 421-452.

Beatty, A. L., Chamberlain, S. L., & Magliolo, J. (1995). Managing financial reports of commercial banks: the influence of taxes regulatory capital, and earnings. Journal of Accounting Research, 33(2), 231-261.

Berry, M. J. A. & Linoff, G. S. (1997). Data mining techniques for marketing,sales, and customer support. NY: John Wiley & Sons,Inc..

Chauvin, K. W. & Shenoy, C. (2001). Stock price decreases prior to executive stock option grants. Journal of Corporate Finance, 7(1), 53-76.

Chung, R., Firth, M., & Kim, J. B. (2002). Institutional monitoring and opportunistic earnings management. Journal of Corpo-rate Finance, 8(1), 29-48.

Collins, J. H., Shackelford, D. A., & Wahlen, J. M. (1995). Bank dif-ferences in the coordination regulatory capital, earnings, and taxes. Journal of Accounting Research, 33, 263-291.

Cohen, M. C. L., Lara, R. J., Smith, C. B., Angélica, R. S., Dias, B. S., Pequeno, T. (2008). Wetland dynamics of Marajó Island, northern Brazil, during the last 1000 years. Catena, 76, 70-77.

Davidson, D., Stickney, C., & Weil, R. (1987). Accounting: The Lan-guage of Business, (7th ed.). Arizona: Thomas Horton and Daughter.

DeAngelo, L. E. (1998). Managerial competition, information costs, and corporate governance: The use of accounting performance measures in proxy contests. Journal of Accounting and Eco-nomics, 10(1), 3-36.

Dechow, P. M. & Sloan, R. G. (1991). Executive incentives and the horizon problem: An empirical investigation. Journal of Ac-counting and Economics, 14(1), 51-89.

Dechow, P. M., Sloan, R. G., & Sweeney, A. (1995). Detecting earn-ings management, The Accounting Review, 170, 193-225.

Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm perfor-mance using financial ratios: A decision tree approach. Expert systems with Applocations, 40(10), 3970-3983.

Erickson, M. & Wang, S. W. (1999). Earnings management by ac-quiring firms in stock for stock mergers. Journal of Account-ing and Economics, 27(2), 149-176.

Fayyad, U. (1997). Data Mining and Knowledge Discovery in Data-base: Implication for Scientific Databases, Scientific and Sta-tistical Database Management, 2-11.

Gaver, J., Gaver, K., & Austin, J. (1995). Additional evidence of bo-nus plans and income management. Journal of Accounting and Economics, 19(1), 3-28.

Goh, J., Lee, H. Y., & Lee, J. W. (2013). Majority shareholder own-ership and real earnings management: Evidence from Korea. Journal of International Financial Management and Ac-counting, 24(1), 26-61.

Guidry, F., Leone, A. J., & Rock, S. (1999). Earnings-based bonus plans and earnings management by business-unit managers. Journal of Accounting and Economics, 26(1), 113-142.

Healy, P. M. (1985). The Effect of Bonus Schemes on Accounting Decisions. Journal of Accounting and Economics, 7, 85-107.

Healy, P. M. & Wahlen, J. M. (1999). A review of earnings manage-ment literature and its implications for standard setting. Ac-counting Horizon, 13(4), 365-384.

Holthausen, R. W. & Leftwich, R. W. (1983). The economic conse-quences of accounting choice implications of costly contract-ing and monitoring. Journal of Accounting and Economics, 5(1), 77-117.

Holthausen, R. W., Larcker, D. F., & Sloan, R. G. (1995). Annual bo-nus schemes and the manipulation of earnings. Journal of Accounting and Economics, 19(1), 29-74.

Kleissner, C. (1998). Data Mining for the Enterprise. IEEE Proc. 31st Annual Hawaii International Conference on System Sciences, 7, 295-304.

Kothari, S. P., Leone A. J., & Wasley C. E. (2005). Performance matched discretionary accrual measures. Journal of Account-ing and Economics, 39(1), 163-197.

Leuz, C., Nanda, D., & Wysocki, P. (2003). Earnings management and investor protection: an international comparison. Journal of Financial Economics, 69(3), 505-527.

Lin, F., Wu, C. M., Fang, T. Y., & Wun, J. C. (2014). The relations among accounting conservatism, institutional investors and earnings manipulation. The International Journal of Theoret-ical and Applied Papers on Economic Modelling, 37, 164-174.

Lu, Chi-Lin, & Chen, Ta-Cheng. (2009). A study of applying data mining approach to the information disclosure for Taiwan's stock market investors. Expert Systems with Applications, 36(2), 3536-3542.

McVay, S., Nagar, V., & Tang, V. (2006). Trading incentives to meet the analyst forecast. Review of Accounting Studies. Forth-coming, 11(4), 575-598.

Moyer, S. E. (1990). Capital adequacy ratio regulations and account-ing choices in commercial banks. Journal of Accounting and Economics, 13(2), 123-154.

Peasnell, K. V., Pope, P. F., & Young, S. E. (2000), Detecting earnings management using cross-sectional abnormal accruals models, Accounting and Business Research, 30(4), 313-326.

Roychowdhury, S. (2006). Earnings management through real activi-ties manipulation. Journal of Accounting and Economics, 42(3), 335-370.

Schipper, K. (1989). Commentary on Earnings Management. Ac-collntil1g Horizons, 3(4), 91-102.

Scott, W. R. (2009). Financial Accounting Theory (5th ed.). Toronto: Pearson Prentice Hall.

Subramanyam, K. R. (1996). The pricing of discretionary accruals. Journal of Accounting and Economics, 22(1-3), 249-281.

Teoh, S. H., Welch, I., & Wong, T. J. (1998). Earnings management and the long-term market performance of initial public offer-ings. Journal of Financial Ecomomics, 50, 63-99.

Vapnik, V. & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774-780.

Wen, Q., Yang, Z., Song, Y., & Jia, P. (2010). Automatic stock deci-sion support system based on box theory and SVM algorithm, Expert Systems with Applications, 37, 1015-1022.

Wilson, R. L. & Sharda, R. (1994). Bankruptcy Prediction Using Neural Networks. Decision Support Systems, 11, 545-557.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊