跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊順吉
研究生(外文):Shun-Chi Yang
論文名稱:振動圓柱對加熱凸塊之熱流分析
論文名稱(外文):Heat Transfer Characteristics of the Heated Block with an Oscillating Cylinder
指導教授:傅武雄傅武雄引用關係
指導教授(外文):Wu-Shung Fu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:振動圓柱熱傳凸塊管道實驗
外文關鍵詞:OscillatingCylinderHeat TransferBlockChannelExperiment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用實驗方法分析管道內裝置往復運動的圓柱之後,對凸塊壁面附近速度以及溫度場的影響,且進一步探討凸塊壁面熱傳的增益。數值方面,利用流體力學計算軟體模擬實際情形,驗證實驗裝置的正確性。實驗方面,主要探討當振動圓柱在不同的振幅、振動頻率、雷諾數狀態下,對管道內凸塊壁面的熱傳效率影響。
由研究結果得知,在流場中圓柱進行往復式的振盪運動,受到圓柱牽引的效應,使管道內的流體呈現上下振盪的現象,引導流體向壁面衝擊,擾亂在圓柱後方壁面的流場,為提高熱傳效率的主要機制。此外,當圓柱振動的頻率接近流場的自然振動頻率時,會與管道內的流體產生共振的現象,此現象能夠大幅的增加流體的擾動,並且擾亂管道內的流場以及溫度場,產生較佳的熱傳增益。
The study investigates the heat transfer enhancement by a reciprocated oscillating cylinder in a channel flow. The characteristics of flow and thermal fields are analyzed experimentally. In the numerical analysis, computational fluid dynamics software is adopted to solve the flow and thermal fields. In the experimental investigation, the effects of Reynolds number, oscillating amplitude and oscillating frequency on the heat transfer characteristics of a heated block in the channel are examined.
The results show that the oscillating cylinder induces the flow vibration. This phenomenon would disturb the flow and thermal fields in the channel flow, and the heat transfer rate in the channel would be enhanced. Furthermore, as the oscillating frequency of the cylinder approach the natural vortex shedding frequency, because of the phenomenon of resonance in the channel flow, and the heat transfer rate is enhanced more remarkably.
摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix
第一章 緒論 1
第二章 振動圓柱對加熱凸塊之熱流實驗 8
2.1 物理模式 8
2.2 實驗設備 8
2.2.1 加熱裝置與溫度量測裝置 8
2.2.2 風洞與風速量測裝置 15
2.2.3 往復運動機構 17
2.3 實驗步驟 24
2.3.1 管道流流速量測 24
2.3.2 啟動往復運動 24
2.3.3 壁面溫度量測 27
第三章 數值模擬 33
3.1 物理模式 33
3.2 數值計算 33
3.3 邊界條件 36
3.4 數值方法 36
3.5網格建立與網格測試 40
第四章 結果與討論 44
4.1 空管性能驗證 44
4.1.1速度分布驗證 44
4.1.2溫度分布驗證 48
4.2 加熱凸塊受振動圓柱頻率、振幅及雷諾數之影響討論 58
4.2.1圓柱振動頻率對熱傳之影響 61
4.2.2圓柱振幅對熱傳之影響 65
4.2.3流體進口雷諾數對熱傳之影響 65
第五章 結論 71
參考文獻 72
附錄:實驗不準度分析 75
[1] K. Ogiso, “Recent Trends in Electronic Equipment Cooling,” Heat Transfer in High Technology and Power Engineering, W.J. Yang and Y. Mori, Hemisphere, Washington D.C., 1987.
[2] Y. Iida, T. Tsuyuki, T. Mashima, T. Takashima, and K. Okuyama, “Augmentation of Boiling Heat Transfer from Horizontal Cylinder to Liquid by Movable Particles,” KAGAKU KOGAKU RONBUNSHU, Vol.26, pp.575-580, 2000.
[3] T. Fusegi, “Numerical Study of Turbulent Forced Convection in a Periodically Ribbed Channel with Oscillatory Throughflow,” International Journal of Numerical Methods in Fluids, Vol.23, pp.1223-1233, 1996.
[4] J.S. Sitter, T.J. Snyder, J.N. Chung, and P.L. Marston, “Terrestrial and Microgravity Pool Boiling Heat Transfer from a Wire in an Acoustic Field,” International Journal of Heat and Mass Transfer, Vol.41, pp.2143-2155, 1998.
[5] K.C. Cheng and G.J. Hwang, “Forced and Mixed Convection Cooling in Computers,” Cooling Techniques for Computers, Win Aung, Hemisphere, Washington D.C., 1991.
[6] A.E. Bergles, “Recent Development in Convective Heat-transfer Augmentation,” Applied Mechanics Reviews, Vol.26, pp.675-682, 1973.
[7] A.E. Bergles, “Survey and Evaluation of Techniques to Augment Convective Heat and Mass Transfer,” Heat and Mass Transfer, Vol.1, pp.331-424, 1969.
[8] A.E. Bergles and R.L. Webb, “A Guide to the Literature on Convective Heat Transfer Augmentation,” Advances in Enhanced Heat Transfer-1985, S.M. Shenkman, J.E. O’Brien, I.S. Habib, and J.A. Kohler, Vol. HTD-Vol.43, pp.81-90, ASME Symposium, 1985.
[9] Wu-Shung Fu, Wen-Wang Ke, Ke-Nan Wang, “Laminar Forced Convection in a Channel with a Moving Block,” International Journal of Heat and Mass Transfer Vol. 44(13), pp. 2385-2394, 2001.
[10] N.K. Ghaddar, M. Magen, B.B. Mikic, A.T. Patera, “Numerical Investigation of Incompressible Flow in Grooved Channels. I. Stability and Self-sustained Oscillations,” Journal of Fluid Mechanics, Vol. 163, pp. 99-127, 1986
[11] N.K. Ghaddar, M. Magen, B.B. Mikic, A.T. Patera, “Numerical Investigation of Incompressible Flow in Grooved Channels. II. Resonance and Oscillatory Heat Transfer Enhancement,” Journal of Fluid Mechanics, Vol. 168, pp. 541-567, 1986
[12] T. A. Myrum, S. Acharya, S. Inamdar, and A. Mehrotra, “Vortex Generator Induced Heat Transfer Augmentation Past a Rib in a Heated Duct Air Flow,” Journal of Heat Transfer, Vol. 114, pp. 280-284, 1992.
[13] T. A. Myrum, X. Qiu, and S. Acharya, “Heat Transfer Enhancement in Ribbed Duct Using Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 3497-3508, 1993.
[14] S. V. Garimella and P. A. Eibeck, “Enhancement of Single Phase Convective Heat Transfer from Protruding Elements Using Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 2431-2433, 1991.
[15] R. S. Iyer and S. Kakac, “Instability and Heat Transfer in Grooved Channel Flow,” Journal of Thermophysics and Heat Transfer, Vol. 11, No. 3, pp. 437-445, 1997
[16] Y. M. Chen and K. C. Wang, “Experimental study on the forced convective flow in a channel with heated blocks on tandem,” Experimental Thermal and Fluid Science, Vol. 16, pp.286-298, 1997.
[17] H. W. Wu and S. W. Perng, “Effect of an Oblique Plate on the Heat Transfer Enhancement of Mixed Convection over Heated Blocks in a Horizontal Channel,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 1217-1235, 1999.
[18] C. Herman, E. Kang, “Heat Transfer Enhancement in a Grooved Channel with Curved Vanes,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3741-3757, 2002.
[19] W.S. Fu and B.H. Tong, “Numerical Investigation into Effect of an Oscillating Cylinder on Heat Transfer of the Heated Wall in a Channel,” Numerical Heat Transfer Part A, Vol.43, pp. 639-658, 2003.
[20] W.S. Fu and B.H. Tong, “Numerical Investigation of Heat Transfer Characteristics of the Heated Blocks in the Channel with a Transversely Oscillating Cylinder,” International Journal of Heat and Mass Transfer, vol. 47, pp. 341-351, 2004.
[21] 童寶鴻,「振動圓柱對渠道內熱流場影響之研究」, 國立交通大學,博士論文,民國92年。
[22] S. V. Patankar, Numerical Heat Transfer And Fluid Flow Chapter 6, McGRAW-Hill Book Company, 1980.
[23] CD adapco Group, Methodology STAR-CD version 3.10,Computerational Dynamics Limited Corp. , 1999.
[24] CD adapco Group, User Guide STAR-CD version 3.10,Computerational Dynamics Limited Corp. , 1999.
[25] Robert D. Blevins, Flow-induced Vibration, VAN NOSTRAND REINHOLD COMPANY.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王建楠、吳宗穎(民90)。環境噪音污染-聽力的隱形殺手。中華職業醫學雜誌。8 (1)。11-20。
2. 李才宇、林樂天、李敏輝(民88)。某基地飛行員聽力之調查。中華職業醫學雜誌。6(1)。9-16。
3. 李憲彥(民85)。耳朵的頭號公敵-噪音。健康世界。127(247)。55-58。
4. 吳聰能、江宏哲(民81)。噪音型聽力損失。工業安全衛生月刊。34。18-29。
5. 吳聰能(民81)。噪音曝露危害人體的聽覺系統。中國環保。11。36-41。
6. 吳聰能、江宏哲(民82)。噪音與聽力損失。工業安全衛生月刊。50。26-37。
7. 吳錦景(民89)。噪音暴露工作與聽力損失之研究-回溯展望法。中國醫藥學院研究年報。16。460-481。
8. 辛懷梓(民90)。不可忽視的環境噪音問題。國民教育。41(3)。65-74。
9. 林守香(民87)。事業單位推動聽力保護狀況之探討。勞工行政。128。21-26。
10. 林守香(民88)。事業單位推動聽力保護現況之探討。勞工安全衛生簡訊。36。12-13。
11. 林秀美、莊世杰(民90)。空軍飛行器維修人員之噪音性聽力障礙。中華職業醫學雜誌。8(1)。21-26。
12. 林振榮、黃士誠(民90)。淺談噪音防治經驗-台塑經驗。工業安全科技。39。46-51。
13. 林聖雄、陳永煌、劉紹興(民87)。某靶場打靶人員之聽力調查研究。中華職業醫學雜誌。5(2)。63-78。
14. 徐順德(民90)。中鋼公司推動OHSAS 18001在防止噪音危害實務簡介。工業安全科技。39。41-45。
15. 陳見財(民83)。工業噪音防治概述。環保資訊。7。13-22。