跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.178) 您好!臺灣時間:2025/11/30 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王翔翎
研究生(外文):Wang, Xiang-Ling
論文名稱:碲化鋅/硒化鎂鋅量子點熱退火後熟成與內擴散競爭之機制研究
論文名稱(外文):Study of competition mechanism between ripening and interdiffusion in ZnTe/ZnMgSe quantum dots by rapid thermal annealing
指導教授:周武清
指導教授(外文):Chou, Wu-Ching
口試委員:陳衛國徐子民綦振瀛黃迪靖
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:分子束磊晶系統碲化鋅量子點熱退火
外文關鍵詞:MBEZnTe quantum dotsthermally anneal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用分子束磊晶系統以 Stranski-Krastanov 成長模式在不同鎂濃度的硒化鎂鋅上沉積碲化鋅量子點,量子點的厚度分別為4.0、5.0、6.0與7.0原子層,另外在硒化鋅上成長4.0原子層厚度的碲化鋅量子點做為參考樣品。並利用快速熱退火、光激螢光光譜、變溫光激螢光光譜與時間解析光譜等實驗技術來探討碲化鋅/硒化鎂鋅量子點熱退火後熟成與內擴散競爭之機制研究。
對不同原子層厚度的碲化鋅量子點做攝氏350度到550度的快速熱退火分析,熱退火時間為30秒,經由光激螢光光譜發現兩個不同熱退火效應,分別為熟成機制和內擴散機制。在熱退火溫度大於470度時,原子層沉積厚度較小的量子點其光激螢光光譜峰值會發生紅移的現象,此為量子點熟成機制所致;然而在原子層沉積厚度較厚的量子點其光激螢光光譜的峰值隨著熱退火溫度上升而有藍移的現象,是因為內擴散機制所主導。而在中間原子層沉積厚度的量子點,上述兩個機制會互相達到平衡,光激螢光光譜的峰值並不隨熱退火溫度而有所變化。
另外從變溫光激螢光光譜觀察到三個不同的活化能,不同機制下活化
能的變化也會有所不同,藉此推測出熟成機制和內擴散機制能帶結構的變化;以及利用兩個複合時間擬合的時間解析光譜,了解不同熱退火機制下對於載子生命週期的影響。本研究闡述不同量子點覆蓋層厚度經由熱退火實驗可由熟成機制或內擴散機制來改變量子點的密度及大小。
  ZnTe quantum dots were grown by Stranski-Krastnov mode on ZnMgSe of different Mg composition by Molecular Beam Epitaxy. The coverage thickness of quantum dots were 4.0, 5.0, 6.0, and 7.0 MLs. ZnTe quantum dots grown on ZnSe was investigated for reference. The physical characteristics were studied by rapid thermal annealing (RTA), photoluminescence (PL) spectroscopy, temperature
dependent PL, and time resolved PL (TRPL).
  Different coverage of ZnTe quantum dots were annealed at temperature from 350°C to 550°C for 30 seconds by RTA. Two mechanisms, ripening and inter-diffusion, were observed in PL spectra of annealed samples. For the samples of annealing temperature larger than 470°C, a red shift of PL peak position was observed in quantum dots of smaller coverage. It is the signature of ripening of quantum dots. However, for the quantum dots with larger coverage, there was a blue shift of PL peak position with increasing annealing temperature. It results from the inter-diffusion of Mg from the barrier layers to the quantum dots. For the quantum dots with moderate coverages, two mechanisms balance and it results in no shift of PL peak position for different annealing temperatures.
  Three different activation energies were found from the Arrhenius fitting of the temperature-dependent PL. The activation energies also vary with ripening and inter-diffusion mechanisms, and the effect of ripening and inter-diffusion on the band structure could be understood. By using two recombination lifetimes to
fit the TRPL spectra, the effect of annealing mechanisms on the carrier lifetime was studied. Current study showed that the dot density and size can be controlled by different coverage thickness of quantum dots and the ripening and inter-diffusion mechanisms of rapid thermal annealing.
摘要........................................................................................................................I
Abstract ............................................................................................................. III
致謝...................................................................................................................... V
目錄.....................................................................................................................VI
圖表目錄..........................................................................................................VIII
表格目錄........................................................................................................... XII
第一章:導論....................................................................................................... 1
第二章:實驗....................................................................................................... 3
2.1 分子束磊晶系統 (Molecular beam epitaxy, MBE) ........................................................3
2.2 樣品製備 ..........................................................................................................................6
2.3 光激螢光光譜系統 (Photoluminescence spectroscopy, PL) ........................................10
2.4 時間解析光激螢光系統 (Time-resolved photoluminescence spectroscopy, TRPL) ...12
2.5 X-光繞射分析儀 (X-ray diffraction, XRD)..................................................................14
2.6 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) .........................................15
2.7 原子力顯微鏡 (Atomic force microscopy, AFM) ........................................................17
2.8 快速熱退火系統 (Rapid thermal annealing, RTA).......................................................20
第三章 結果與討論........................................................................................... 21
3.1 硒化鋅薄膜及碲化鋅薄膜的品質優化 ........................................................................21
3.2 硒化鎂鋅薄膜之特性分析 ............................................................................................24
3.3 碲化鋅量子點特性分析 ................................................................................................27
3.4 碲化鋅量子點熱退火後特性分析 ................................................................................32
3.5 碲化鋅量子點熱退火後變溫光激螢光光譜分析 ........................................................43
3.6 碲化鋅量子點熱退火後時間解析光譜分析 ................................................................50
第四章:結論..................................................................................................... 58
參考文獻............................................................................................................. 59
[1] R. Nötzel, "Self-organized growth of quantum-dot structures,"Semiconductor Science and Technology, vol. 11, no. 10, p. 1365, 1996.
[2] D. Leonard, K. Pond, and P. Petroff, "Critical layer thickness for selfassembled InAs islands on GaAs,"Physical Review B, vol. 50, no. 16, p. 11687, 1994.
[3] D. Leonard, M. Krishnamurthy, C. Reaves, S. P. DenBaars, and P. M. Petroff, "Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces," Applied Physics Letters, vol. 63, no. 23, pp. 3203-3205, 1993.
[4] K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, "Phonon bottleneck in self-formed In x Ga 1− x As/GaAs quantum dots by electroluminescence and time-resolved photoluminescence,"Physical Review B, vol. 54, no. 8,
p. R5243, 1996.
[5] S. Raymond et al., "State filling and time-resolved photoluminescence of excited states in In x Ga 1− x As/GaAs self-assembled quantum dots,"Physical Review B, vol. 54, no. 16, p. 11548, 1996.
[6] K. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P. Petroff, and G. Döhler,"Carrier relaxation and electronic structure in InAs self-assembled quantum dots," Physical Review B, vol. 54, no. 16, p. 11346, 1996.
[7] H. Lee, K. Lee, H. Park, T. Kim, and Y.-H. Kim, "Effect of thermal annealing on the interband transitions and activation energies of CdTe∕ZnTe quantum dots," Journal of applied physics, vol. 98, no. 2, p. 023702,
2005.
[8] R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. Cockayne, "Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots," Applied Physics Letters, vol. 69, no. 13, pp. 1888-1890, 1996.
[9] Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, "Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots," Applied Physics Letters, vol. 94, no. 5, p. 053101, 2009.
[10] S. Malik, C. Roberts, R. Murray, and M. Pate, "Tuning self-assembled InAs quantum dots by rapid thermal annealing," Applied Physics Letters, vol. 71, no. 14, pp. 1987-1989, 1997.
[11] Q. Mo, T. Fan, Q. Gong, J. Wu, Z. Wang, and Y. Bai, "Effects of annealing on self-organized InAs quantum islands on GaAs (100)," Applied physics letters, vol. 73, no. 24, pp. 3518-3520, 1998.
[12] S. Xu et al., "Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots," Applied Physics Letters, vol. 72, no. 25, pp. 3335-3337, 1998.
[13] A. Raab and G. Springholz, "Oswald ripening and shape transitions of selfassembled PbSe quantum dots on PbTe (111) during annealing," Applied Physics Letters, vol. 77, no. 19, pp. 2991-2993, 2000.
[14] M. Zinke-Allmang, L. C. Feldman, and M. H. Grabow, "Clustering on surfaces," Surface Science Reports, vol. 16, no. 8, pp. 377-463, 1992.
[15] Q. Zhang, A. Shen, I. L. Kuskovsky, and M. C. Tamargo, "Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe quantum dots embedded in ZnSe," Journal of Applied Physics, vol. 110, no. 3, p. 034302, 2011.
[16] S.-K. Hong, J.-H. Chang, T. Hanada, E. Kurtz, M. Oku, and T. Yao,"Correlation of surface chemistry of GaAs substrates with growth mode and stacking fault density in ZnSe epilayers," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, no. 6, pp. 1948-
1954, 2002.
[17] I. L. Kuskovsky et al., "Optical properties of δ-doped ZnSe: Te grown by molecular beam epitaxy: The role of tellurium," Physical Review B, vol. 63, no. 15, p. 155205, 2001.
[18] Y. Horikoshi, M. Kawashima, and H. Yamaguchi, "Low-temperature growth of GaAs and AlAs-GaAs quantum-well layers by modified molecular beam epitaxy," Japanese Journal of Applied Physics, vol. 25, no. 10A, p. L868, 1986.
[19] B. Wilson et al., "Intrinsic and extrinsic photoluminescence spectra of ZnTe films on GaAs deposited by molecular‐beam and organo‐metallic vapor‐phase epitaxy," Journal of applied physics, vol. 64, no. 6, pp. 3210-3214, 1988.
[20] S.-A. Park et al., "Photoluminescence properties of Mg x Zn 1− x Se single crystals," Journal of applied physics, vol. 83, no. 6, pp. 3429-3431, 1998.
[21] P. M. Smiley, R. N. Biagioni, and A. B. Ellis, "Zinc Selenide Photoelectrodes Efficient Radiative Recombination in a Stable Photoelectrochemical Cell," Journal of The Electrochemical Society, vol. 131, no. 5, pp. 1068-1073, 1984.
[22] M. Sohel, M. Muñoz, and M. C. Tamargo, "Molecular beam epitaxial growth and characterization of zinc-blende ZnMgSe on InP (001)," Applied physics letters, vol. 85, no. 14, pp. 2794-2796, 2004.
[23] B. Jobst, D. Hommel, U. Lunz, T. Gerhard, and G. Landwehr, "E 0 bandgap energy and lattice constant of ternary Zn1− x Mg x Se as functions of composition," Applied Physics Letters, vol. 69, no. 1, pp. 97-99, 1996.
[24] M. H. Liao, Y. Change, C. Tsai, M. Chieng, and Y. Chen, "Growth and photoluminescence study of ZnTe quantum dots," Journal of applied physics, vol. 86, no. 8, pp. 4694-4696, 1999.
[25] M. Kuo et al., "Photoluminescence studies of type-II diluted magnetic semiconductor Zn Mn Te∕ Zn Se quantum dots," Applied physics letters, vol. 89, no. 26, p. 263111, 2006.
[26] S. Mackowski, G. Prechtl, W. Heiss, F. Kyrychenko, G. Karczewski, and J. Kossut, "Impact of carrier redistribution on the photoluminescence of CdTe self-assembled quantum dot ensembles," Physical Review B, vol. 69, no. 20, p. 205325, 2004.
[27] W. Fan et al., "Growth and optical properties of ZnTe quantum dots on ZnMgSe by molecular beam epitaxy," Journal of Crystal Growth, vol. 425, pp. 186-190, 2015.
[28] F. Ross, J. Tersoff, and R. Tromp, "Coarsening of self-assembled Ge quantum dots on Si (001)," Physical Review Letters, vol. 80, no. 5, p. 984, 1998.
[29] J. Drucker, "Coherent islands and microstructural evolution," Physical Review B, vol. 48, no. 24, p. 18203, 1993.
[30] Y. Chen and J. Washburn, "Structural transition in large-lattice-mismatch heteroepitaxy," Physical review letters, vol. 77, no. 19, p. 4046, 1996.
[31] S. Lee, I. Daruka, C. Kim, A.-L. Barabási, J. Merz, and J. Furdyna, "Dynamics of ripening of self-assembled II-VI semiconductor quantum dots," Physical review letters, vol. 81, no. 16, p. 3479, 1998.
[32] T. Kamins and R. S. Williams, "A model for size evolution of pyramidal Ge islands on Si (001) during annealing," Surface science, vol. 405, no. 2, pp.
L580-L586, 1998.
[33] Y.-T. Shih, W. Fan, C. Yang, M. Kuo, and W. Chou, "Optical properties of
Cd x Zn 1− x Te epilayers grown by molecular-beam epitaxy," Journal of applied physics, vol. 94, no. 6, pp. 3791-3795, 2003.
[34] Y.-T. Shih, Y. Tsai, C. Yuan, C. Chen, C. Yang, and W. Chou, "Photoluminescence of Zn Se x Te 1− x∕ Zn Te multiple-quantum-well structures grown by molecular-beam epitaxy," Journal of applied physics, vol. 96, no. 12, pp. 7267-7271, 2004.
[35] J. Lee et al., "Analysis of size distributions of type II ZnTe/ZnSe quantum dots," physica status solidi (b), vol. 241, no. 15, pp. 3532-3543, 2004.
[36] W. Ke et al., "Optical properties and carrier dynamics of self-assembled GaN/Al0. 11Ga0. 89N quantum dots," Nanotechnology, vol. 17, no. 10, p. 2609, 2006.
[37] B. Sturman, E. Podivilov, and M. Gorkunov, "Origin of stretched exponential relaxation for hopping-transport models," Physical review letters, vol. 91, no. 17, p. 176602, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top