|
[1] R. Nötzel, "Self-organized growth of quantum-dot structures,"Semiconductor Science and Technology, vol. 11, no. 10, p. 1365, 1996. [2] D. Leonard, K. Pond, and P. Petroff, "Critical layer thickness for selfassembled InAs islands on GaAs,"Physical Review B, vol. 50, no. 16, p. 11687, 1994. [3] D. Leonard, M. Krishnamurthy, C. Reaves, S. P. DenBaars, and P. M. Petroff, "Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces," Applied Physics Letters, vol. 63, no. 23, pp. 3203-3205, 1993. [4] K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, "Phonon bottleneck in self-formed In x Ga 1− x As/GaAs quantum dots by electroluminescence and time-resolved photoluminescence,"Physical Review B, vol. 54, no. 8, p. R5243, 1996. [5] S. Raymond et al., "State filling and time-resolved photoluminescence of excited states in In x Ga 1− x As/GaAs self-assembled quantum dots,"Physical Review B, vol. 54, no. 16, p. 11548, 1996. [6] K. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P. Petroff, and G. Döhler,"Carrier relaxation and electronic structure in InAs self-assembled quantum dots," Physical Review B, vol. 54, no. 16, p. 11346, 1996. [7] H. Lee, K. Lee, H. Park, T. Kim, and Y.-H. Kim, "Effect of thermal annealing on the interband transitions and activation energies of CdTe∕ZnTe quantum dots," Journal of applied physics, vol. 98, no. 2, p. 023702, 2005. [8] R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, and D. Cockayne, "Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots," Applied Physics Letters, vol. 69, no. 13, pp. 1888-1890, 1996. [9] Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, "Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots," Applied Physics Letters, vol. 94, no. 5, p. 053101, 2009. [10] S. Malik, C. Roberts, R. Murray, and M. Pate, "Tuning self-assembled InAs quantum dots by rapid thermal annealing," Applied Physics Letters, vol. 71, no. 14, pp. 1987-1989, 1997. [11] Q. Mo, T. Fan, Q. Gong, J. Wu, Z. Wang, and Y. Bai, "Effects of annealing on self-organized InAs quantum islands on GaAs (100)," Applied physics letters, vol. 73, no. 24, pp. 3518-3520, 1998. [12] S. Xu et al., "Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots," Applied Physics Letters, vol. 72, no. 25, pp. 3335-3337, 1998. [13] A. Raab and G. Springholz, "Oswald ripening and shape transitions of selfassembled PbSe quantum dots on PbTe (111) during annealing," Applied Physics Letters, vol. 77, no. 19, pp. 2991-2993, 2000. [14] M. Zinke-Allmang, L. C. Feldman, and M. H. Grabow, "Clustering on surfaces," Surface Science Reports, vol. 16, no. 8, pp. 377-463, 1992. [15] Q. Zhang, A. Shen, I. L. Kuskovsky, and M. C. Tamargo, "Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe quantum dots embedded in ZnSe," Journal of Applied Physics, vol. 110, no. 3, p. 034302, 2011. [16] S.-K. Hong, J.-H. Chang, T. Hanada, E. Kurtz, M. Oku, and T. Yao,"Correlation of surface chemistry of GaAs substrates with growth mode and stacking fault density in ZnSe epilayers," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, no. 6, pp. 1948- 1954, 2002. [17] I. L. Kuskovsky et al., "Optical properties of δ-doped ZnSe: Te grown by molecular beam epitaxy: The role of tellurium," Physical Review B, vol. 63, no. 15, p. 155205, 2001. [18] Y. Horikoshi, M. Kawashima, and H. Yamaguchi, "Low-temperature growth of GaAs and AlAs-GaAs quantum-well layers by modified molecular beam epitaxy," Japanese Journal of Applied Physics, vol. 25, no. 10A, p. L868, 1986. [19] B. Wilson et al., "Intrinsic and extrinsic photoluminescence spectra of ZnTe films on GaAs deposited by molecular‐beam and organo‐metallic vapor‐phase epitaxy," Journal of applied physics, vol. 64, no. 6, pp. 3210-3214, 1988. [20] S.-A. Park et al., "Photoluminescence properties of Mg x Zn 1− x Se single crystals," Journal of applied physics, vol. 83, no. 6, pp. 3429-3431, 1998. [21] P. M. Smiley, R. N. Biagioni, and A. B. Ellis, "Zinc Selenide Photoelectrodes Efficient Radiative Recombination in a Stable Photoelectrochemical Cell," Journal of The Electrochemical Society, vol. 131, no. 5, pp. 1068-1073, 1984. [22] M. Sohel, M. Muñoz, and M. C. Tamargo, "Molecular beam epitaxial growth and characterization of zinc-blende ZnMgSe on InP (001)," Applied physics letters, vol. 85, no. 14, pp. 2794-2796, 2004. [23] B. Jobst, D. Hommel, U. Lunz, T. Gerhard, and G. Landwehr, "E 0 bandgap energy and lattice constant of ternary Zn1− x Mg x Se as functions of composition," Applied Physics Letters, vol. 69, no. 1, pp. 97-99, 1996. [24] M. H. Liao, Y. Change, C. Tsai, M. Chieng, and Y. Chen, "Growth and photoluminescence study of ZnTe quantum dots," Journal of applied physics, vol. 86, no. 8, pp. 4694-4696, 1999. [25] M. Kuo et al., "Photoluminescence studies of type-II diluted magnetic semiconductor Zn Mn Te∕ Zn Se quantum dots," Applied physics letters, vol. 89, no. 26, p. 263111, 2006. [26] S. Mackowski, G. Prechtl, W. Heiss, F. Kyrychenko, G. Karczewski, and J. Kossut, "Impact of carrier redistribution on the photoluminescence of CdTe self-assembled quantum dot ensembles," Physical Review B, vol. 69, no. 20, p. 205325, 2004. [27] W. Fan et al., "Growth and optical properties of ZnTe quantum dots on ZnMgSe by molecular beam epitaxy," Journal of Crystal Growth, vol. 425, pp. 186-190, 2015. [28] F. Ross, J. Tersoff, and R. Tromp, "Coarsening of self-assembled Ge quantum dots on Si (001)," Physical Review Letters, vol. 80, no. 5, p. 984, 1998. [29] J. Drucker, "Coherent islands and microstructural evolution," Physical Review B, vol. 48, no. 24, p. 18203, 1993. [30] Y. Chen and J. Washburn, "Structural transition in large-lattice-mismatch heteroepitaxy," Physical review letters, vol. 77, no. 19, p. 4046, 1996. [31] S. Lee, I. Daruka, C. Kim, A.-L. Barabási, J. Merz, and J. Furdyna, "Dynamics of ripening of self-assembled II-VI semiconductor quantum dots," Physical review letters, vol. 81, no. 16, p. 3479, 1998. [32] T. Kamins and R. S. Williams, "A model for size evolution of pyramidal Ge islands on Si (001) during annealing," Surface science, vol. 405, no. 2, pp. L580-L586, 1998. [33] Y.-T. Shih, W. Fan, C. Yang, M. Kuo, and W. Chou, "Optical properties of Cd x Zn 1− x Te epilayers grown by molecular-beam epitaxy," Journal of applied physics, vol. 94, no. 6, pp. 3791-3795, 2003. [34] Y.-T. Shih, Y. Tsai, C. Yuan, C. Chen, C. Yang, and W. Chou, "Photoluminescence of Zn Se x Te 1− x∕ Zn Te multiple-quantum-well structures grown by molecular-beam epitaxy," Journal of applied physics, vol. 96, no. 12, pp. 7267-7271, 2004. [35] J. Lee et al., "Analysis of size distributions of type II ZnTe/ZnSe quantum dots," physica status solidi (b), vol. 241, no. 15, pp. 3532-3543, 2004. [36] W. Ke et al., "Optical properties and carrier dynamics of self-assembled GaN/Al0. 11Ga0. 89N quantum dots," Nanotechnology, vol. 17, no. 10, p. 2609, 2006. [37] B. Sturman, E. Podivilov, and M. Gorkunov, "Origin of stretched exponential relaxation for hopping-transport models," Physical review letters, vol. 91, no. 17, p. 176602, 2003.
|