跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何夢凡
研究生(外文):Meng Fan Ho
論文名稱:同時提升聚羥基烷酸酯合成酶熱穩定性與酵素活性關鍵胺基酸位置之研究
論文名稱(外文):The study of the key amino acid residues simultaneously enhances the thermostability and enzyme activity of PHA synthase
指導教授:許德賢
口試委員:劉啟德鄭至玉
口試日期:2015-01-26
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海洋生物技術研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:聚羥基烷酸酯酵素熱穩定性酵素比活性
外文關鍵詞:polyhydroxyalkanoateRalstonia eutropha H16 PHA synthasethermostabilityenzyme activity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
致謝…………………………………………………………………………… i
摘要…………………………………………………………………………… ii
Abstract……………………………………………………………………...… iv
目錄………………………………………………………………………….... vi
表目錄…………………………………………………………………........ x
圖目錄………………………………………………………………………… xi
附表目錄……………………………………………………………………… xii
附圖目錄……………………………………………………………………… xiii
第壹章 前 言………………………………………………………………… 1
一、 聚羥基烷酸酯……………………………………..………………… 1
二、 PHA之特性………………………………………………………..... 1
1. 化學結構…………………………………………………………….. 1
2. 物理性質…..………………………………………………………… 2
3. 生物降解性與再生性….……………………………………………. 2
三、 PHA之應用………………………………………………………..... 3
四、 PHA之生合成……………………………………………………… 3
五、 生合成PHA之相關基因……………………………………………. 4
六、 微生物種類與生合成PHA之關係…………………………………. 6
七、 碳源種類與生合成PHA之關係……………………………………. 7
八、 PHA合成酶的蛋白質工程…………………………………………. 7
九、 研究起源與目的…………………………………………………….. 8
第貳章 材料與方法………………………………………………………….. 9
一、 化學藥品…………………………………………….......................... 9
二、 實驗器材及儀器…………………………………………………… 9
三、 PhaCH16點變異株菌E. coli / pBCspAB-H16CX之製備…………… 9
1. 熱休克勝任細胞之製備...................................................................... 10
2. 轉形作用……………………………..……………………………… 10
四、 胺基酸位置D233,A466以及A493飽和突變株質體之建構…… 10
1. 飽和突變模板股之建立………………………………….................. 10
2. 飽和突變之聚合酶連鎖反應……………………………………….. 10
2-1 飽和突變B片段之增幅………………..…………………………… 12
2-2 飽和突變megaprimer之增幅……………….……………………… 12
2-3 飽和突變A片段之增幅…………………………………………….. 12
2-4 飽和突變A片段及B片段之重組………………..………………… 13
2-5 增幅重組之飽和突變A片段及B片段…………………..………… 13
3. 接合作用……………………………………………..……………… 13
4. 轉形作用…………………………………………………………….. 14
5. 質體DNA之萃取…………………………………………………… 14
6. 核酸定序……………………………………………..……………… 14
五、 定點突變株之製備…………………………………..……………… 15
1. 定點突變之聚合酶連鎖反應……………………………………….. 15
2. 限制酶截切………………………………………………………….. 15
3. 轉形作用…………………………………………………………….. 15
六、 PHA產量分析………………………………………………………. 15
1. PHA之累積……………………………………………………….. 15
2. PHA甲基化分解………………...………………………………….. 16
3. PHA定量分析……………………...………………………….......... 16
七、 重組蛋白質PHA synthase之表現………………………………….. 16
1. 表現質體之建構…………………………………………………….. 16
2. 重組蛋白質PHA synthase之表現………...………………………... 16
八、 重組蛋白質PHA synthase之純化………………………………...... 17
1. 樣品前處理………………………………………………………….. 17
2. 硫酸胺沉澱………………………………………………………….. 17
3. 疏水性管柱層析…………………………………………………….. 17
九、 十二烷基硫酸鈉-聚丙烯醯胺膠體電泳…………………………… 18
1. 電泳膠體之配製………………………………………...................... 18
2. 樣品處理與蛋白質電泳…………………………………………...... 18
3. 蛋白質膠片的染色與退染………………………………………….. 18
十、 蛋白質濃度之測定………………………………………………….. 19
十一、 重組PHA synthase之生化特性分析…………………………... 19
1. 最適反應溫度……………………………………………………….. 19
2. 熱失活半衰期……………………………………………………….. 19
十二、 PHA合成酶基質專一性分析………………………………...... 20
1. 質體pBHR-H16Cx之建構………...………………………………... 20
2. 電穿孔勝任細胞之製備…………………………………………….. 20
3. 基質專一性分析菌株P. putida GPp104 PHA-/pBHR-H16CX之PHA累積………………………….………………………………… 20
十三、 蛋白質動態結構分析………………………………………….. 21
第參章 結 果………………………………………………………………… 22
一、 提升聚羥基烷酸酯合成酶PhaCH16熱穩定性與酵素比活性的關鍵胺基酸位置………..……………………………………………... 22
二、 PhaCH16飽和突變實驗對PHB累積之影響………………………... 23
1. PHA合成酶胺基酸位置D233飽和突變變異株PHB累積結果….. 23
2. 飽和突變變異點於PHA合成酶胺基酸位置A466的PHB累積….. 23
3. PHA合成酶胺基酸位置A493飽和突變變異株PHB累積試驗….. 24
三、 多個胺基酸變異點對PhaCH16酵素於PHB累積之影響…………... 25
四、 PHA合成酶變異株之蛋白質表現與純化…………………………. 25
五、 PHA合成酶變異株酵素比活性與熱穩定性分析…………………. 26
1. 最適反應溫度……………………………………………………….. 26
2. 熱失活半衰期試驗………………………………………………….. 26
六、 PHA合成酶變異株之酵素基質專一性分析……………………..... 27
七、 蛋白質螢光消光 (fluorescence quenching) 試驗…………………. 27
第肆章 討 論………………………………………………………………… 29
第伍章 結 論………………………………………………………………… 32
參 考 文 獻………………………………………………………………….. 34


表 目 錄
表一、 本研究使用之引子…………………………………………………… 39
表二、 本研究使用之飽和突變引子………………………………………… 40
表三、 本研究使用之定點突變引子………………………………………… 42
表四、 各個PhaCH16點變異株菌E. coli/pBCspAB-H16CX於37 oC及42 oC
之PHB累積分析……..……………………………………………… 44
表五、 胺基酸位置D233飽和突變變異株於37 oC及42 oC之PHB累積分析……………………...…………………………………………… 46
表六、 胺基酸位置A466飽和突變變異株於37 oC及42 oC之PHB累積分析………………………..…………………………………………. 47
表七、 胺基酸位置A493飽和突變變異株於37 oC及42 oC之PHB累積分析……………………………………………………….………….. 48
表八、 多點變異點組合變異株於30 oC、37 oC及42 oC之PHB累積分
析…………………………………………………………..………… 49
表九、 野生株與變異株PHA合成酶之最適反應溫度、最適反應比活性與45 oC溫度熱失活半衰期的分析………...…………………….... 50
表十、 重組P. putida GPp104 PHA-於30 oC累積PHA及單體組成分析….. 51


圖 目 錄
圖一、 R. eutropha H16 PHA合成酶於胺基酸位置D233飽和突變變異株在37 oC及42 oC的PHB累積分析…………..………………………. 52
圖二、 R. eutropha H16 PHA合成酶於胺基酸位置A466飽和突變變異株在37 oC及42 oC的PHB累積分析…………………………….…….. 53
圖三、 R. eutropha H16 PHA合成酶於胺基酸位置A493飽和突變變異株在37 oC及42 oC的PHB累積分析……………………….………….. 54
圖四、 重組PHA synthase之純化…………………………………………... 55
圖五、 野生株與突變株PHA合成酶最適反應溫度的分析……………...… 56
圖六、 各個PHA合成酶於45 oC之熱失活半衰期…………………………. 57
圖七、 野生株與變異株PHA合成酶的螢光消光實驗分析……………....... 58


附 表 目 錄
附表一、 PHA與聚丙烯的物理性質……..………………………………...... 59
附表二、 PHA synthase的分類……...……………………..………………… 60


附 圖 目 錄
附圖一、 PHA化學結構……..…………………………..………………...... 61
附圖二、 P(3HB) 的合成路徑……………………………………………… 61
附圖三、 PHA生合成之代謝路徑…………………………..……………… 62
附圖四、 中溫菌與嗜熱菌PHA合成酶之胺基酸序列比對………………... 63

賴勇維,(2010) Cupriavidus sp. S6 PHA synthase熱穩定性之蛋白質工程研究。國立高雄海洋科技大學海洋生物技術研究所碩士論文。

Anderson, A. J. and E. A. Dawes (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev, 54, 450-72.

Bhubalan, K., J. A. Chuah, F. Shozui, C. J. Brigham, S. Taguchi, A. J. Sinskey, C. Rha and K. Sudesh (2011) Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium sp. Strain USM2. Appl Environ Microbiol, 77, 2926-2933.

Byrom, D. (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol, 5, 246-250.

Chen, G. Q. and Wu Q. (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26,6565–6578.

D'Amico, S., J. C. Marx, C. Gerday and G. Feller (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem, 278, 7891-6.

Doi Y. (1995) Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates. Macromol Symp, 98:585–599.

Eftink, M. R. and C. A. Ghiron (1975) Dynamics of a protein matrix revealed by fluorescence quenching. Proc Natl Acad Sci U S A, 72, 3290-4.

Foster, L. J., R. W. Lenz and R. C. Fuller (1999) Intracellular depolymerase activity in isolated inclusion bodies containing polyhydroxyalkanoates with long alkyl and functional substituents in the side chain. Int J Biol Macromol, 26, 187-92.

Gaseidnes, S., B. Synstad, X. Jia, H. Kjellesvik, G. Vriend and V. G. Eijsink (2003) Stabilization of a chitinase from Serratia marcescens by Gly-->Ala and Xxx-->Pro mutations. Protein Eng, 16, 841-6.

Gerngross, T. U., K. D. Snell, O. P. Peoples, A. J. Sinskey, E. Csuhai, S. Masamune and J. Stubbe (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry, 33, 9311-20.

Hong, S. Y., H. J. Park and Y. J. Yoo (2014) Flexibility analysis of activity-enhanced mutants of bacteriophage T4 lysozyme. J Mol Catal B: Enzym, 106, 95-99.

Jendrossek, D., A. Schirmer and H. G. Schlegel (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol, 46, 451-63.

Kahar, P., J. Agus, Y. Kikkawa, K. Taguchi, Y. Doi and T. Tsuge (2005) Effective production and kinetic characterization of ultra high molecular weight poly[(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym Degrad Stab, 87, 161-169.

Kahar, P., T. Tsuge, K. Taguchi and Y. Doi (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab, 83, 79-86.

Kichise, T., S. Taguchi and Y. Doi (2002) Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl Environ Microbiol, 68, 2411-2419.

Kim, Y. B. and Lenz, R. W. (2001) Polyesters from Microorganisms. Adv Biochem Eng Biotechnol, 71, 51-79.

Kumar, S., C. J. Tsai and R. Nussinov (2000) Factors enhancing protein thermostability. Protein Eng, 13, 179-91.

Lee, S. Y., Chang, H. N. and Chang, Y. K. (1994) Production of
poly(β-hydroxybutyric acid) by recombinant Escherichia coli. Ann N Y Acad Sci, 721, 43-53.

Loo, C. Y. and Sudesh, K. (2007) Polyhydroxyalkanoates: Bio-based microbial plastics and their properties. MPJ, 2, 31-57.

Madison, L. L. and G. W. Huisman (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev, 63, 21-53.

Margarit, I., S. Campagnoli, F. Frigerio, G. Grandi, V. De Filippis and A. Fontana (1992) Cumulative stabilizing effects of glycine to alanine substitutions in Bacillus subtilis neutral protease. Protein Eng, 5, 543-50.

Matsumura, M., G. Signor and B. W. Matthews (1989) Substantial increase of protein stability by multiple disulphide bonds. Nature, 342, 291-3.

McCool, G. J., T. Fernandez, N. Li and M. C. Cannon (1996) Polyhydroxyalkanoate inclusion-body growth and proliferation in Bacillus megaterium. FEMS Microbiol Lett, 138, 41-48.

Nishida, H. and Tokiwa, Y. (1993) Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone)aerobic degrading microorganisms in different environments. J Polym Environ, 1, 227-233.

Normi, Y. M., T. Hiraishi, S. Taguchi, H. Abe, K. Sudesh, N. Najimudin and Y. Doi (2005) Characterization and properties of G4X mutants of Ralstonia eutropha PHA synthase for poly(3-hydroxybutyrate) biosynthesis in Escherichia coli. Macromol Biosci, 5, 197-206.

Pechkova, E., V. Sivozhelezov and C. Nicolini (2007) Protein thermal stability: the role of protein structure and aqueous environment. Arch Biochem Biophys, 466, 40-8.

Peoples, O. P. and A. J. Sinskey. (1989) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J boil chem. 264, 15298-15303

Poirier, Y., Nawrath C. and Somerville C. (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and rlastomers, in bacteria and plants. Nat Biotechnol, 13, 142 - 150.

Rehm, B. H. (2003) Polyester synthases: natural catalysts for plastics. Biochem J, 376, 15-33.

Sadeghi, M., H. Naderi-Manesh, M. Zarrabi and B. Ranjbar (2006) Effective factors in thermostability of thermophilic proteins. Biophys Chem, 119, 256-70.

Salehizadeh, H. and M. C. Van Loosdrecht (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv, 22, 261-79.

Steinbüchel, A. and Valentin H. E. (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett, 128, 219-228.

Steinbüchel, A. and Schlegel, H. G. (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol, 535-542.

Sheu, D. S., W. M. Chen, Y. W. Lai and R. C. Chang (2012) Mutations derived from the thermophilic polyhydroxyalkanoate synthase PhaC enhance the thermostability and activity of PhaC from Cupriavidus necator H16. J Bacteriol, 194, 2620-9.

Sudesh, K., H. Abe and Y. Doi (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci, 25, 1503-1555.

Suresh Kumar, M., S. N. Mudliar, K. M. K. Reddy and T. Chakrabarti (2004) Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant. Bioresource Technol, 95, 327-330.


Taguchi, S., A. Maehara, K. Takase, M. Nakahara, H. Nakamura and Y. Doi (2001) Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microbiol Lett, 198, 65-71.

Taguchi, S., H. Nakamura, T. Hiraishi, I. Yamato and Y. Doi (2002) In vitro evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. J Biochem, 131, 801-6.

Vetriani, C., D. L. Maeder, N. Tolliday, K. S. Yip, T. J. Stillman, K. L. Britton, D. W. Rice, H. H. Klump and F. T. Robb (1998) Protein thermostability above 100 degreesC: a key role for ionic interactions. Proc Natl Acad Sci U S A, 95, 12300-5.

Vihinen, M. (1987) Relationship of protein flexibility to thermostability. Protein Eng, 1, 477-80.

Yu, H. and H. Huang (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv, 32, 308-15.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊