跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃中琳
研究生(外文):HUANG, CHUNG-LIN
論文名稱:結合靜電紡絲技術開發PVDF纖維智慧布料感測器應用於監測生命現象
論文名稱(外文):Development of a PVDF Smart Fabric Force Sensor via Electrospinning Technique for Detecting Breathing Patterns
指導教授:盧燈茂盧燈茂引用關係莊承鑫莊承鑫引用關係
指導教授(外文):LU, TENG-MAOCHUANG, CHENG-HSIN
口試委員:李永春盧彥文
口試委員(外文):LI, YUNG-CHUNLU, YEN-WEN
口試日期:2017-07-14
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:靜電紡絲PVDF壓電纖維智慧布料
外文關鍵詞:ElectrospinningPVDFPiezoelectric FiberSmart Fabric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
隨著生活水準的提升,醫療衛生長足的進步使得全球普遍人類壽命逐漸延長,我國在少子化的趨勢下逐漸進入「高齡化社會」,預計於2026年更將走入「超高齡社會」。人口老化帶來的失能人口數增加亦日益嚴重,需專人照護的老年人逐漸增加,導致國內長照機構設立亦逐年地增加。由於國內長照機構人力缺乏,而相關照護人力無法跟上長照機構設立,及相關輔助設備(如持續性生命現象偵測儀器)不足之情況下,若住民處於瀕臨死亡邊緣時,而無在黃金時間內急救時,則造成機構與家屬之議端。本研究開發結合靜電紡絲技術生產PVDF纖維,以標準三明治結構製備智慧布料感測器;利用近場式與遠場式靜電紡絲技術製作PVDF纖維作為主要之感測材料,並使用三種不同量測方法檢測感測器之訊號,第一種利用標準週期性動態量測平台施加相同應力於不同面積與不同重量百分比濃度PVDF纖維之感測器表面上,觀察纖維面積大小於電壓輸出訊號之差別;第二種實驗利用標準線性滑軌拉伸力量測平台,針對感測器施以軸向拉伸與釋放兩種不同運動,透過不同拉伸速度與拉伸長度,量測不同重量百分比濃度之PVDF纖維智慧布料感測器之輸出訊號結果;第三種實驗方法則是利用標準週期性動態拉伸力量測平台,以週期激振器往復地拉伸感測器,透過不同拉伸頻率0.5 Hz、0.33 Hz與0.2Hz (模擬人體呼吸急促、正常與緩慢之情境)及不同拉伸長度,探討不同重量百分比濃度之PVDF纖維智慧布料感測器,是否能夠辨別呼吸頻率及其靈敏度,此PVDF纖維布料感測器若配合後端電路讀取系統與雲端管理服務,將能夠提供長期照護服務機構具低成本、低人力與減少醫療糾紛之穿戴式醫療輔具,作為新型持續性生命現象之監控感測器。
The improvements in living standards and healthcare has led to an overall increase in life expectancy. This should result in Taiwan having an “ultra-aged society” by 2026 with the proportion of elderly citizens estimated to reach 20.63%. The problem of disability caused by the aging of the population is getting worse with a large number of elderly citizens in need of constant care. Consequently, the number of long term healthcare agencies and old age homes providing continuous care and support is increasing each year. To ensure effective care of these residents by giving medical treatment as soon as it is required, it is critical to monitor their vital signs like heart rate and breathing patterns continuously in real time. Based on the above demographic trends and demands of the long-term agencies, in this project we propose the development of a novel wearable sensor based on piezoelectric electrospinning for breathing detection as an alternative to traditionally used equipment that are bulky and expensive. This research is based on using polyvinyl (PVDF) fibers obtained via electrospinning as the primary sensing element. The abdominal expansion and contraction during respiratory breathing causes stretching of the PVDF fibers that results in a voltage output based on the piezoelectric effect. We use a conductive stretchable fabric for charge extraction that is aimed to provide comfort and suitability for long term wearable application, which use different weight percentage of PVDF powder to make a smart fabric sensor that can distinguish the different frequencies 0.5 Hz, 0.33 Hz and 0.2 Hz (Simulate the shortness, normal and slow situation of human breathing) of human’s breathing patterns, this study is able to integrate with IOT solutions in the future to achieve wearable medical aids as a novel real-time monitoring dection of breathing patterns sensor.
摘要 I
Abstract II
致謝 III
目次 IV
表目錄 VII
圖目錄 VIII
第一章緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法與步驟 5
1.4 文獻回顧 5
1.4.1 現有產品之比較表 5
1.4.2 靜電紡絲技術與種類 7
1.4.2.1 近場靜電紡絲技術 7
1.4.2.2 遠場靜電紡絲技術 10
1.4.2.3 離心式靜電紡絲技術 11
1.4.2.4 氣泡式靜電紡絲技術 12
1.4.2.5 無針式靜電紡絲技術 13
1.4.3 PVDF纖維之應用 14
1.5 本文架構 24
第二章理論 25
2.1靜電紡絲技術 26
2.2 壓電效應 29
2.2.1 正壓電效應 31
第三章 感測器設計與製程 37
3.1 PVDF溶液調配 37
3.1.1 國立中山大學機電與機械工程學系-潘正堂老師實驗室 40
3.1.2 國立成功大學化學工程學系-陳志勇老師實驗室 41
3.2 PVDF靜電紡絲製程 42
3.2.1 近場式中空玻璃圓柱靜電紡絲 42
3.2.2 遠場式離心靜電紡絲 45
3.3 感測器設計與製作流程 47
3.3.1 近場式中空玻璃圓柱靜電紡絲-智慧布料感測器製備 47
3.3.1.1 PVDF電紡絲智慧布料感測器 47
3.3.1.2 織狀PVDF電紡絲感測器 48
3.3.2 遠場式離心靜電紡絲-可拉伸式PVDF感測器製備 52
第四章 實驗架構與量測系統 54
4.1 實驗設備 55
4.2 實驗架構 62
4.2.1 標準週期性動態壓力量測平台 64
4.2.2 標準線性滑軌拉伸力量測平台 66
4.2.3 標準週期性動態拉伸力量測平台 68
第五章 實驗結果與討論 71
5.1 近場式電紡絲感測器實驗結果 71
5.1.1 PVDF電紡絲智慧布料感測器 71
5.1.2 織狀PVDF電紡絲感測器 73
5.2 遠場式電紡絲智慧布料感測器實驗結果 74
5.2.1 週期性壓力測試結果 78
5.2.2 線性滑軌拉伸力測試結果 80
5.2.3 週期性動態拉伸力測試結果 83
第六章 結論與未來展望 86
6.1 結論 86
6.2 未來展望 89
參考文獻 91
附錄A 95
附錄B 96
作者簡介 97

[1]IDTechEx-2015~2026穿戴式裝置全球市場預估趨勢圖表. Wearable Technology 2016-2026.
[2]The Market for Smart Wearable Technology A Consumer Centric Approach P.39 WiFore Wireless Consulting. http://www.wifore.com/.
[3]內政部消防署中華民國106年1月編譯-初級救護技術員訓練教材.
[4]台北榮民總醫院桃園分院 新聞標題-生命徵象的測量 2009年04月17日. http://www.tyvh.gov.tw/index.php?mo=HealthInfo&ac=health1_print&sn=113.
[5]臺安醫院醫藥專欄-臺安醫訊第134期,臺安醫院胸腔內科主治醫師 蕭嘉榮. http://www.tahsda.org.tw/newsletters/?p=1610.
[6]全世界的一件智能服裝「ICD+」. http://www.vhmdesignfutures.com/project/192/.
[7]Incredible智能運動內衣. https://www.underarmour.com/en-us.
[8]GoMore體力感測計. http://www.gomore.me/zh_tw/.
[9]Digital Shirt Smoozi. http://www.cityzensciences.com/.
[10]Commuter Jacket. https://www.visijax.com/.
[11]LikeAGlove Visijax. http://likeaglove.me/.
[12]AmpStrip. https://www.dcrainmaker.com/.
[13]Sun, D.H., et al., Near-field electrospinning. Nano Letters, 2006. 6(4): p. 839-842.
[14]Pu, J.A., et al., Piezoelectric actuation of direct-write electrospun fibers. Sensors and Actuators a-Physical, 2010. 164(1-2): p. 131-136.
[15]Liu, Z.H., et al., Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Materials and Structures, 2014. 23(2).
[16]Li, Q.L., S.C. Xib, and X.W. Zhang, Conservation of paper relics by electrospun PVDF fiber membranes. Journal of Cultural Heritage, 2014. 15(4): p. 359-364.
[17]Ron, L.Y. and S.P. Kotha, Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Materials Letters, 2014. 117: p. 153-157.
[18]Hernandez-Navarro, N., et al., Electrospun polyvinylidene fluoride nanofibers by bubble electrospinning technique. Materials Letters, 2016. 167: p. 34-37.
[19]Fang, J., et al., Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy & Environmental Science, 2013. 6(7): p. 2196-2202.
[20]Bian, Y.X., et al., Design and fabrication of a metal core PVDF fiber for an air flow sensor. Smart Materials and Structures, 2015. 24(10).
[21]Fuh, Y.K. and B.S. Wang, Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition. Nano Energy, 2016. 30: p. 677-683.
[22]Zampetti, E., Bearzotti, A., and Macagnano, A., Flexible Piezoelectric Transducer Based on Electrospun PVDF Nanofibers for Sensing Applications. Procedia Engineering, 2014. Volume 87: p. 1509-1512.
[23]Wang, Y.R., et al., A flexible piezoelectric force sensor based on PVDF fabrics. Smart Materials & Structures, 2011. 20(4).
[24]Asadnia, M., Kottapalli, A. G. P., Miao, J. M., and Triantafyllou, M. S., Ultra-sensitive and stretchable strain sensor based on piezoelectric polymeric nanofibers. MEMES 2015, 2015: p. 18-22.
[25]Zeng, W., et al., Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy & Environmental Science, 2013. 6(9): p. 2631-2638.
[26]Tsai, C.C., et al., Nanoporous artificial proboscis for probing minute amount of liquids. Nanoscale, 2011. 3(11): p. 4685-4695.
[27]Yoon, S., et al., PVDF nanoweb touch sensors prepared using electro-spinning process for smart apparels applications. Advances in Science and Technology. Trans Tech Publications, 2008: p. 52-57.
[28]Liu, Z.H., et al., Crystallization and mechanical behavior of the ferroelectric polymer nonwoven fiber fabrics for highly durable wearable sensor applications. Applied Surface Science, 2015. 346: p. 291-301.
[29]Chang, C.E., et al., Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Letters, 2010. 10(2): p. 726-731.
[30]Lawrence, C.A., Fundamentals of spun yarn technology. Crc Press, 2003.
[31]Cooley, J.F.P.G., Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids. 1900年5月19日.
[32]Cooley, J.F.e.a., Apparatus for electrically dispersing fluids. 美國專利 692,631, 1902年2月4日.
[33]Morton, W.J.e.a., Method of dispersing fluids. 美國專利 0,705,691, 1902年7月29日.
[34]Norton, C.L., Method and apparatus for producing fibrous or filamentary material. 美國專利 2,048,651, 1936年7月21日.
[35]4SPIN- Electrospinning technology for nanofiber production.
[36]Sensor Products Division, Piezo Film Sensors Technical Manual, Measurement Specialties Inc., PA, pp. 1-50, 2011.
[37]Kim, J.F., et al., Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. Aiche Journal, 2016. 62(2): p. 461-490.
[38]Poulsen, Matthew, and Stephen Ducharme. Why ferroelectric polyvinylidene fluoride is special. IEEE Transactions on Dielectrics and Electrical Insulation 17.4 (2010).
[39]Bauer, S. et al., Piezoelectric polymers and their applications. Piezoelectricity: evolution and future of a technology 114 (2008): 157-180.
[40]Liu, Z.H., et al., A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an interdigital electrode. Sensors and Actuators a-Physical, 2014. 211: p. 78-88.
[41]Yen, C.K., et al., Electrospun PVDF fibers on bio-wings using multi-spinnerets. Nano/Micro Engineered and Molecular Systems (NEMS), 2014 9th IEEE International Conference on. IEEE, 2014.
[42]Ou, Z.Y., et al., Study on piezoelectric properties of near-field electrospinning PVDF/MWCNT nano-fiber. Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference, 2012.
[43]Liu, Z.H., et al., Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors and Actuators a-Physical, 2013. 193: p. 13-24.
[44]張惟閔, 靜電紡絲製備複合性奈米碳纖維應用於超級電容器. 國立成功大學化學工程學系,博士論文, 2017.
[45]廖家駿, 以新式的靜電紡絲技術誘導奈米纖維異向性結構性質之研究. 國立成功大學化學工程學系,博士論文, 2011.
[46]Chang, J.Y., et al., Piezoelectric nanofibers for energy scavenging applications. Nano Energy, 2012. 1(3): p. 356-371.
[47]Lin, Y.L., et al., Characteristic of single-fiber PVDF nanoharvester via new hollow cylindrical near-field electrospining process. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊