跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李凱益
研究生(外文):LI, Kai-Yi
論文名稱:Levosimendan在腹膜炎引發敗血性休克伴隨多重器官衰竭大鼠之療效
論文名稱(外文):Therapeutic Effects of Levosimendan on Peritonitis-Induced Septic Shock with Multiple Organ Dysfunction Syndrome in Rats
指導教授:吳錦楨
指導教授(外文):WU, Chin-Chen
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:147
中文關鍵詞:腹膜炎敗血性休克多重器官衰竭
外文關鍵詞:levosimendanperitonitis-induced septic shockmultiple organ dysfunction syndrome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
敗血症的後遺症最後導致多重器官衰竭,為造成敗血症休克重症病患死亡的主要因素。在敗血症時,細菌的產物和毒素會活化人體內生性的免疫細胞;例如巨噬細胞和嗜中性白血球,釋放大量的發炎媒介物促使自由基生成,引起NO大量的產生,導致全身循環衰竭與氧氣供需失衡,最後造成多重器官衰竭而死亡。儘管臨床使用血管收縮劑治療,但是並沒有明顯改善敗血症休克病人整體的存活率。而免疫淋巴細胞其細胞凋亡表現的增加,也已被證實是造成敗血症免疫抑制主要的因素,而防止免疫淋巴細胞在敗血症時的細胞凋亡現象可能可以做為治療敗血症的一個有效的途徑。 Levosimendan (LS) 為一個新型的鈣離子增敏劑,主要可以增加心肌的收縮力卻不會增心肌氧的耗損或引起心室心律不整。目前,LS被通過用於短期治療急性無法代償的充血性心衰竭。因此本實驗為研究 LS 對於盲腸結紮穿孔術 (cecal ligation and puncture, CLP) 引起Wistar 大鼠經腹膜炎敗血性休克導致多重器官衰竭的可能療效。本實驗分為六組:(一) 假手術組 (sham-operation, SOP);(二) SOP 給載體組 (SOP手術後3小時給予5% 葡萄糖靜脈持續輸注30 μl/kg/min 六小時,起使劑量120 μl/kg十分鐘);(三) SOP給藥 (LS) 組 (SOP手術後三小時給予靜脈持續輸注0.3 μg/kg/min 六小時,起始劑量 12 μg/kg十分鐘);(四) 盲腸結紮穿孔組 (CLP);(五) CLP給載體組 (CLP手術後三小時給予5%葡萄糖靜脈持續輸注30 μl/kg/min六小時,起使劑量120 μl/kg十分鐘) 和 (六) CLP給藥 (LS) 組 (CLP手術後三小時給予靜脈持續輸注0.3 μg/kg/min六小時,起始劑量 12 μg/kg十分鐘)。觀察大鼠於術前術後血液動力學、血糖、血氣分析、體溫、細胞損傷程度、肝臟功能和腎臟功能、血中nitric oxide (NO)、interleukin-1 (IL-1) 濃度。予術後18小時犧牲動物,取下組織分別研究病理切片,定量inducible NO synthase (iNOS) 蛋白質、脾臟的casepase-3 蛋白質的表現及超氧游離基 (superoxide anion, O2.- ) 的濃度。實驗結果發現,給予 LS 後:(一) 改善 CLP 引起的低血壓、低血糖、血管低反應性;(二) 減少血清中 GPT、GOT、CRE、BUN 和 LDH的濃度上升的情形;(三) 減少血中的 NO 和 IL-1 的濃度增加的現象,並改善器官中大量的超氧游離基上升及肺 iNOS 蛋白大量表現;(四) 減輕肺、肝、腎和小腸多型核嗜中性白血球 (polymorphonuclear neutrophil, PMN) 浸潤的情形;(五) 改善脾臟細胞凋亡增加的情形;(六) 改善代謝性酸中毒的現象;(七) 改善整體的存活率。因此, LS 改善CLP 所誘發敗血性休克導致的高死亡率可能是透過抑制血中的 NO、IL-1濃度和器官中的超氧游離基增加的現象,以及減少多型核嗜中性球在肺臟、肝臟和小腸的浸潤和改善胰臟細胞凋亡增加的現象。
Sepsis/septic shock and its sequelae, multiple organ dysfunction syndrome (MODS), are major contributors of mortality in critically ill patients. In sepsis, bacterial products and toxins activate cells of innate immune system (macrophages and neutrophils) to release amount of inflammatory mediator and the formation of free radicals results in producing large quantity of nitric oxide (NO), leading to circulatory failure and an imbalance between systemic oxygen delivery and demand, and finally causing MODS. Although the use of vasopressors is recommended, but there is still no significant improvement in survival rate of patients with septic shock. Enhanced lymphocyte apoptosis has been identified as a cornerstone in sepsis pathophysiology, thus creating a state of immunosuppression and preventing lymphocyte apoptosis during the course of sepsis may represent a way of effectively treating this disorder. Levosimendan (LS) is not a vasopressor, but a fairly new calcium sensitizer with positive inotropic properties without increasing myocardial oxygen consumption or inducing ventricular arrhythmias. Therefore, we evaluated the effects of LS in Wistar rats with MODS induced by cecal ligation and puncture (CLP). Rats were divided into six groups: (1) sham-operation (SOP), (2) SOP + vehicle (infusion dose (5% glucose): 30 μl/kg/min for 6 h, loading dose: 120 μl/kg for 10 min i.v. at 3 hr after SOP), (3) SOP + LS (infusion dose: 0.3 μg/kg/min for 6 hr, loading dose 12 μg/kg for 10 min i.v. at 3 hr after SOP) (4) CLP, (5) CLP + vehicle (infusion dose (5% glucose): 30 μl/kg/min for 6 h, loading dose: 120 μl/kg for 10 min i.v. at 3 hr after CLP) and (6) CLP + LS (infusion dose: 0.3 μg/kg/min for 6 hr, loading dose 12 μg/kg for 10 min i.v. at 3 hr after CLP). The changes of hemodynamics, blood glucose, blood gas, rectal temperature, cell damage, hepatic function and renal function, plasma NO, interleukin (IL)-1  level and survival rate were monitored over 18 h. After sacrifice, most organs were excised for histological examination studies, inducible NO synthase expression (iNOS) (lung), Caspase-3 protein expression (spleen) and superoxide anion measurement. Our results showed that LS (1) improved hypotension, hypoglycemia, and vascular hyporeactivity caused by CLP, (2) reduced GPT, GOT, CRE, BUN and LDH in plasma, (3) reduced plasma NO and IL-1  level, superoxide anion levels and lung iNOS expression, (4) decreased lung, liver, kidney, intestine polymorphonuclear neutrophils (PMN) infiltration, (5) attenuated apoptosis of spleen, (6) improved metabolic acidosis, (7) improved the survival rate compared to the CLP + vehicle group. Thus, the beneficial effect of LS may contribute to reducing the plasma concentration of NO and IL-1  as well as organ superoxide anion levels and decreasing lung, liver, intestine PMN infiltration and spleen apoptosis, thereby decreasing the mortality rate in peritonitis-induced septic animals.
目錄 Ⅰ
圖表目錄 Ⅱ
英文縮寫對照一覽表 Ⅴ
中文摘要 IX
英文摘要 XII
第一章 緒言 1
第二章 材料與方法 29
第三章 結果 45
第四章 討論 60
第五章 結論 85
參考文獻 126
參考文獻
1.Abi-Gerges, N., Tavernier, B., Mebazaa, A., Faivre, V., Paqueron, X., Payen, D., Fischmeister, R., and Mery, P. F. (1999). Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. Am J Respir Crit Care Med 160, 1196-1204.
2.Akao, M., Ohler, A., O'Rourke, B., and Marban, E. (2001). Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res 88, 1267-1275.
3.Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511.
4.Alberti, C., Brun-Buisson, C., Burchardi, H., Martin, C., Goodman, S., Artigas, A., Sicignano, A., Palazzo, M., Moreno, R., Boulme, R., et al. (2002). Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28, 108-121.
5.Alderton, W. K., Cooper, C. E., and Knowles, R. G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593-615.
6.Angus, D. C., Linde-Zwirble, W. T., Lidicker, J., Clermont, G., Carcillo, J., and Pinsky, M. R. (2001). Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29, 1303-1310.
7.Armant, M. A., and Fenton, M. J. (2002). Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome biology 3, REVIEWS3011.
8.Ayala, A., Evans, T. A., and Chaudry, I. H. (1998). Does hepatocellular injury in sepsis involve apoptosis? J Surg Res 76, 165-173.
9.Ball, H. A., Cook, J. A., Wise, W. C., and Halushka, P. V. (1986). Role of thromboxane, prostaglandins and leukotrienes in endotoxic and septic shock. Intensive Care Med 12, 116-126.
10.Barraud, D., Faivre, V., Damy, T., Welschbillig, S., Gayat, E., Heymes, C., Payen, D., Shah, A. M., and Mebazaa, A. (2007). Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide-treated rabbits: comparison with dobutamine and milrinone. Crit Care Med 35, 1376-1382.
11.Beal, A. L., and Cerra, F. B. (1994). Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA 271, 226-233.
12.Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America 87, 1620-1624.
13.Beckman, J. S., and Crow, J. P. (1993). Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochemical Society transactions 21, 330-334.
14.Behrends, M., and Peters, J. (2003). The calcium sensitizer levosimendan attenuates endotoxin-evoked myocardial dysfunction in isolated guinea pig hearts. Intensive Care Med 29, 1802-1807.
15.Bernard, G. R., Vincent, J. L., Laterre, P. F., LaRosa, S. P., Dhainaut, J. F., Lopez-Rodriguez, A., Steingrub, J. S., Garber, G. E., Helterbrand, J. D., Ely, E. W., and Fisher, C. J., Jr. (2001). Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344, 699-709.
16.Beutler, B., and Cerami, A. (1987). Cachectin: more than a tumor necrosis factor. The New England journal of medicine 316, 379-385.
17.Beutler, B., Milsark, I. W., and Cerami, A. C. (1985). Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science (New York, NY 229, 869-871.
18.Boknik, P., Neumann, J., Kaspareit, G., Schmitz, W., Scholz, H., Vahlensieck, U., and Zimmermann, N. (1997). Mechanisms of the contractile effects of levosimendan in the mammalian heart. J Pharmacol Exp Ther 280, 277-283.
19.Bone, R. C., Grodzin, C. J., and Balk, R. A. (1997). Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112, 235-243.
20.Bone, R. C., Sibbald, W. J., and Sprung, C. L. (1992). The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 101, 1481-1483.
21.Boost, K. A., Hoegl, S., Dolfen, A., Czerwonka, H., Scheiermann, P., Zwissler, B., and Hofstetter, C. (2008). Inhaled levosimendan reduces mortality and release of proinflammatory mediators in a rat model of experimental ventilator-induced lung injury. Crit Care Med 36, 1873-1879.
22.Borden, C. W., and Hall, W. H. (1951). Fatal transfusion reactions from massive bacterial contamination of blood. N Engl J Med 245, 760-765.
23.Borovikova, L. V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G. I., Watkins, L. R., Wang, H., Abumrad, N., Eaton, J. W., and Tracey, K. J. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458-462.
24.Bosch, M. A., Garcia, R., Pagani, R., Portoles, M. T., Diaz-Laviada, I., Abarca, S., Ainaga, M. J., Risco, C., and Municio, A. M. (1988). Induction of reversible shock by Escherichia coli lipopolysaccharide in rats. Changes in serum and cell membrane parameters. Br J Exp Pathol 69, 805-812.
25.Bouchelouche, P. N., Reimert, C., and Bendtzen, K. (1988). Effects of natural and recombinant interleukin-1 alpha and -beta on cytosolic free calcium in human and murine fibroblasts. Leukemia 2, 691-696.
26.Bowman, P., Haikala, H., and Paul, R. J. (1999). Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization. J Pharmacol Exp Ther 288, 316-325.
27.Brandes, R. P., Koddenberg, G., Gwinner, W., Kim, D., Kruse, H. J., Busse, R., and Mugge, A. (1999). Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia. Hypertension 33, 1243-1249.
28.Cabano, F. (1993). [A proposal for a computerized clinical records file for a department of general surgery]. Minerva Chir 48, 495-503.
29.Cai, D., Yuan, M., Frantz, D. F., Melendez, P. A., Hansen, L., Lee, J., and Shoelson, S. E. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11, 183-190.
30.Callahan, L. A., Nethery, D., Stofan, D., DiMarco, A., and Supinski, G. (2001). Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis. American journal of respiratory cell and molecular biology 24, 210-217.
31.Cannon, J. G. (2000). Inflammatory Cytokines in Nonpathological States. News Physiol Sci 15, 298-303.
32.Cannon, J. G., Tompkins, R. G., Gelfand, J. A., Michie, H. R., Stanford, G. G., van der Meer, J. W., Endres, S., Lonnemann, G., Corsetti, J., Chernow, B., and et al. (1990). Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 161, 79-84.
33.Carlstedt, F., Eriksson, M., Kiiski, R., Larsson, A., and Lind, L. (2000). Hypocalcemia during porcine endotoxemic shock: effects of calcium administration. Crit Care Med 28, 2909-2914.
34.Chen, S. J., Wu, C. C., and Yen, M. H. (1999). Role of nitric oxide and K+-channels in vascular hyporeactivity induced by endotoxin. Naunyn-Schmiedeberg's archives of pharmacology 359, 493-499.
35.Choda, Y., Morimoto, Y., Miyaso, H., Shinoura, S., Saito, S., Yagi, T., Iwagaki, H., and Tanaka, N. (2004). Failure of the gut barrier system enhances liver injury in rats: protection of hepatocytes by gut-derived hepatocyte growth factor. European journal of gastroenterology & hepatology 16, 1017-1025.
36.Chung, C. S., Song, G. Y., Lomas, J., Simms, H. H., Chaudry, I. H., and Ayala, A. (2003). Inhibition of Fas/Fas ligand signaling improves septic survival: differential effects on macrophage apoptotic and functional capacity. J Leukoc Biol 74, 344-351.
37.Chung, C. S., Yang, S., Song, G. Y., Lomas, J., Wang, P., Simms, H. H., Chaudry, I. H., and Ayala, A. (2001). Inhibition of Fas signaling prevents hepatic injury and improves organ blood flow during sepsis. Surgery 130, 339-345.
38.Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J 326 ( Pt 1), 1-16.
39.Cook, J. A., Li, E. J., Spicer, K. M., Wise, W. C., and Halushka, P. V. (1990). Effect of leukotriene receptor antagonists on vascular permeability during endotoxic shock. Circ Shock 32, 209-218.
40.da Silva-Santos, J. E., Terluk, M. R., and Assreuy, J. (2002). Differential involvement of guanylate cyclase and potassium channels in nitric oxide-induced hyporesponsiveness to phenylephrine in endotoxemic rats. Shock 17, 70-76.
41.De Backer, D., Creteur, J., Preiser, J. C., Dubois, M. J., and Vincent, J. L. (2002). Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166, 98-104.
42.De Witt, B. J., Ibrahim, I. N., Bayer, E., Fields, A. M., Richards, T. A., Banister, R. E., and Kaye, A. D. (2002). An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 94, 1427-1433, table of contents.
43.Deitch, E. A. (1992). Multiple organ failure. Pathophysiology and potential future therapy. Annals of surgery 216, 117-134.
44.Deitch, E. A. (1998). Animal models of sepsis and shock: a review and lessons learned. Shock 9, 1-11.
45.Dellinger, R. P. (2003). Cardiovascular management of septic shock. Crit Care Med 31, 946-955.
46.Desai, T. K., Carlson, R. W., and Geheb, M. A. (1988). Prevalence and clinical implications of hypocalcemia in acutely ill patients in a medical intensive care setting. The American journal of medicine 84, 209-214.
47.Dinarello, C. A., and Wolff, S. M. (1993). The role of interleukin-1 in disease. The New England journal of medicine 328, 106-113.
48.Dorinsky, P. M., and Gadek, J. E. (1989). Mechanisms of multiple nonpulmonary organ failure in ARDS. Chest 96, 885-892.
49.Du Toit, E. F., Muller, C. A., McCarthy, J., and Opie, L. H. (1999). Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther 290, 505-514.
50.Dubin, A., Murias, G., Sottile, J. P., Pozo, M. O., Baran, M., Edul, V. S., Canales, H. S., Etcheverry, G., Maskin, B., and Estenssoro, E. (2007). Effects of levosimendan and dobutamine in experimental acute endotoxemia: a preliminary controlled study. Intensive Care Med 33, 485-494.
51.Duranteau, J., Sitbon, P., Teboul, J. L., Vicaut, E., Anguel, N., Richard, C., and Samii, K. (1999). Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med 27, 893-900.
52.Edes, I., Kiss, E., Kitada, Y., Powers, F. M., Papp, J. G., Kranias, E. G., and Solaro, R. J. (1995). Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res 77, 107-113.
53.Eiseman, B., Beart, R., and Norton, L. (1977). Multiple organ failure. Surg Gynecol Obstet 144, 323-326.
54.Erdei, N., Papp, Z., Pollesello, P., Edes, I., and Bagi, Z. (2006). The levosimendan metabolite OR-1896 elicits vasodilation by activating the K(ATP) and BK(Ca) channels in rat isolated arterioles. Br J Pharmacol 148, 696-702.
55.Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245, C1-14.
56.Faivre, V., Kaskos, H., Callebert, J., Losser, M. R., Milliez, P., Bonnin, P., Payen, D., and Mebazaa, A. (2005). Cardiac and renal effects of levosimendan, arginine vasopressin, and norepinephrine in lipopolysaccharide-treated rabbits. Anesthesiology 103, 514-521.
57.Filep, J. G., Delalandre, A., and Beauchamp, M. (1997). Dual role for nitric oxide in the regulation of plasma volume and albumin escape during endotoxin shock in conscious rats. Circulation research 81, 840-847.
58.Follath, F., Cleland, J. G., Just, H., Papp, J. G., Scholz, H., Peuhkurinen, K., Harjola, V. P., Mitrovic, V., Abdalla, M., Sandell, E. P., and Lehtonen, L. (2002). Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 360, 196-202.
59.Forstermann, U., Closs, E. I., Pollock, J. S., Nakane, M., Schwarz, P., Gath, I., and Kleinert, H. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23, 1121-1131.
60.Freise, H., Bruckner, U. B., and Spiegel, H. U. (2001). Animal models of sepsis. J Invest Surg 14, 195-212.
61.Fridovich, I. (1970). Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. The Journal of biological chemistry 245, 4053-4057.
62.Friedman, G., Silva, E., and Vincent, J. L. (1998). Has the mortality of septic shock changed with time. Crit Care Med 26, 2078-2086.
63.Fries, M., Ince, C., Rossaint, R., Bleilevens, C., Bickenbach, J., Rex, S., and Mik, E. G. (2008). Levosimendan but not norepinephrine improves microvascular oxygenation during experimental septic shock. Crit Care Med 36, 1886-1891.
64.Fry, D. E., Pearlstein, L., Fulton, R. L., and Polk, H. C., Jr. (1980). Multiple system organ failure. The role of uncontrolled infection. Arch Surg 115, 136-140.
65.Furchgott, R. F., and Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376.
66.Gonzalez, C. F., Finberg, L., and Bluestein, D. D. (1964). Electrolyte Concentration During Acute Infections. Observations in Infants and Children. American journal of diseases of children (1960) 107, 476-482.
67.Goris, R. J., te Boekhorst, T. P., Nuytinck, J. K., and Gimbrere, J. S. (1985). Multiple-organ failure. Generalized autodestructive inflammation? Arch Surg 120, 1109-1115.
68.Groeneveld, A. B., Bronsveld, W., and Thijs, L. G. (1986). Hemodynamic determinants of mortality in human septic shock. Surgery 99, 140-153.
69.Groeneveld, P. H., Kwappenberg, K. M., Langermans, J. A., Nibbering, P. H., and Curtis, L. (1996). Nitric oxide (NO) production correlates with renal insufficiency and multiple organ dysfunction syndrome in severe sepsis. Intensive Care Med 22, 1197-1202.
70.Gross, G. J., and Fryer, R. M. (1999). Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circulation research 84, 973-979.
71.Gross, G. J., and Fryer, R. M. (2000). Mitochondrial K(ATP) channels: triggers or distal effectors of ischemic or pharmacological preconditioning? Circ Res 87, 431-433.
72.Gruhn, N., Nielsen-Kudsk, J. E., Theilgaard, S., Bang, L., Olesen, S. P., and Aldershvile, J. (1998). Coronary vasorelaxant effect of levosimendan, a new inodilator with calcium-sensitizing properties. J Cardiovasc Pharmacol 31, 741-749.
73.Guchelaar, H. J., Vermes, A., Vermes, I., and Haanen, C. (1997). Apoptosis: molecular mechanisms and implications for cancer chemotherapy. Pharm World Sci 19, 119-125.
74.Guice, K. S., Oldham, K. T., Caty, M. G., Johnson, K. J., and Ward, P. A. (1989). Neutrophil-dependent, oxygen-radical mediated lung injury associated with acute pancreatitis. Annals of surgery 210, 740-747.
75.Gutteridge, J. M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41, 1819-1828.
76.Gutteridge, J. M., and Mitchell, J. (1999). Redox imbalance in the critically ill. Br Med Bull 55, 49-75.
77.Hacker, G. (2000). The morphology of apoptosis. Cell Tissue Res 301, 5-17.
78.Haikala, H., Kaivola, J., Nissinen, E., Wall, P., Levijoki, J., and Linden, I. B. (1995a). Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J Mol Cell Cardiol 27, 1859-1866.
79.Haikala, H., Levijoki, J., and Linden, I. B. (1995b). Troponin C-mediated calcium sensitization by levosimendan accelerates the proportional development of isometric tension. J Mol Cell Cardiol 27, 2155-2165.
80.Haikala, H., and Linden, I. B. (1995). Mechanisms of action of calcium-sensitizing drugs. J Cardiovasc Pharmacol 26 Suppl 1, S10-19.
81.Haikala, H., Nissinen, E., Etemadzadeh, E., Levijoki, J., and Linden, I. B. (1995c). Troponin C-mediated calcium sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol 25, 794-801.
82.Harkin, C. P., Pagel, P. S., Tessmer, J. P., and Warltier, D. C. (1995). Systemic and coronary hemodynamic actions and left ventricular functional effects of levosimendan in conscious dogs. J Cardiovasc Pharmacol 26, 179-188.
83.Harlan, J. M. (1987). Neutrophil-mediated vascular injury. Acta medica Scandinavica 715, 123-129.
84.Harrison, D. A., Welch, C. A., and Eddleston, J. M. (2006). The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database. Crit Care 10, R42.
85.Hasenfuss, G., Pieske, B., Castell, M., Kretschmann, B., Maier, L. S., and Just, H. (1998). Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation 98, 2141-2147.
86.Hayes, M. A., Timmins, A. C., Yau, E. H., Palazzo, M., Watson, D., and Hinds, C. J. (1997). Oxygen transport patterns in patients with sepsis syndrome or septic shock: influence of treatment and relationship to outcome. Crit Care Med 25, 926-936.
87.Heard, S. O., Perkins, M. W., and Fink, M. P. (1992). Tumor necrosis factor-alpha causes myocardial depression in guinea pigs. Critical care medicine 20, 523-527.
88.Hohn, J., Pataricza, J., Petri, A., Toth, G. K., Balogh, A., Varro, A., and Papp, J. G. (2004). Levosimendan interacts with potassium channel blockers in human saphenous veins. Basic Clin Pharmacol Toxicol 94, 271-273.
89.Hong, S. T., Bang, S., Hyun, S., Kang, J., Jeong, K., Paik, D., Chung, J., and Kim, J. (2008). cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 454, 771-775.
90.Hotchkiss, R. S., and Karl, I. E. (2003). The pathophysiology and treatment of sepsis. N Engl J Med 348, 138-150.
91.Hotchkiss, R. S., Swanson, P. E., Freeman, B. D., Tinsley, K. W., Cobb, J. P., Matuschak, G. M., Buchman, T. G., and Karl, I. E. (1999a). Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27, 1230-1251.
92.Hotchkiss, R. S., Swanson, P. E., Knudson, C. M., Chang, K. C., Cobb, J. P., Osborne, D. F., Zollner, K. M., Buchman, T. G., Korsmeyer, S. J., and Karl, I. E. (1999b). Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol 162, 4148-4156.
93.Hoyert, D. L., Arias, E., Smith, B. L., Murphy, S. L., and Kochanek, K. D. (2001). Deaths: final data for 1999. Natl Vital Stat Rep 49, 1-113.
94.Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., and Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84, 9265-9269.
95.Ince, C. (2005). The microcirculation is the motor of sepsis. Crit Care 9 Suppl 4, S13-19.
96.Jonsson, E. N., Antila, S., McFadyen, L., Lehtonen, L., and Karlsson, M. O. (2003). Population pharmacokinetics of levosimendan in patients with congestive heart failure. Br J Clin Pharmacol 55, 544-551.
97.Julou-Schaeffer, G., Gray, G. A., Fleming, I., Schott, C., Parratt, J. R., and Stoclet, J. C. (1990). Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. The American journal of physiology 259, H1038-1043.
98.Kaheinen, P., Pollesello, P., Levijoki, J., and Haikala, H. (2001). Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 37, 367-374.
99.Kannan, H., Tanaka, Y., Kunitake, T., Ueta, Y., Hayashida, Y., and Yamashita, H. (1996). Activation of sympathetic outflow by recombinant human interleukin-1 beta in conscious rats. Am J Physiol 270, R479-485.
100.Kengatharan, K. M., De Kimpe, S. J., and Thiemermann, C. (1996). Role of nitric oxide in the circulatory failure and organ injury in a rodent model of gram-positive shock. British journal of pharmacology 119, 1411-1421.
101.Kilbourn, R. G., Gross, S. S., Jubran, A., Adams, J., Griffith, O. W., Levi, R., and Lodato, R. F. (1990a). NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci U S A 87, 3629-3632.
102.Kilbourn, R. G., Jubran, A., Gross, S. S., Griffith, O. W., Levi, R., Adams, J., and Lodato, R. F. (1990b). Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun 172, 1132-1138.
103.Kilpatrick-Smith, L., and Erecinska, M. (1983). Cellular effects of endotoxin in vitro. I. Effect of endotoxin on mitochondrial substrate metabolism and intracellular calcium. Circulatory shock 11, 85-99.
104.Kivikko, M., Antila, S., Eha, J., Lehtonen, L., and Pentikainen, P. J. (2002). Pharmacokinetics of levosimendan and its metabolites during and after a 24-hour continuous infusion in patients with severe heart failure. Int J Clin Pharmacol Ther 40, 465-471.
105.Koo, D. J., Zhou, M., Jackman, D., Cioffi, W. G., Bland, K. I., Chaudry, I. H., and Wang, P. (1999). Is gut the major source of proinflammatory cytokine release during polymicrobial sepsis? Biochimica et biophysica acta 1454, 289-295.
106.Kopustinskiene, D. M., Pollesello, P., and Saris, N. E. (2001). Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol 428, 311-314.
107.Kopustinskiene, D. M., Pollesello, P., and Saris, N. E. (2004). Potassium-specific effects of levosimendan on heart mitochondria. Biochem Pharmacol 68, 807-812.
108.Krejci, V., Hiltebrand, L. B., and Sigurdsson, G. H. (2006). Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit Care Med 34, 1456-1463.
109.Kuhns, D. B., Alvord, W. G., and Gallin, J. I. (1995). Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans. J Infect Dis 171, 145-152.
110.Kumar, A., Haery, C., and Parrillo, J. E. (2000). Myocardial dysfunction in septic shock. Crit Care Clin 16, 251-287.
111.Lancaster, M. K., and Cook, S. J. (1997). The effects of levosimendan on [Ca2+]i in guinea-pig isolated ventricular myocytes. Eur J Pharmacol 339, 97-100.
112.Landino, L. M., Crews, B. C., Timmons, M. D., Morrow, J. D., and Marnett, L. J. (1996). Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci U S A 93, 15069-15074.
113.Landry, D. W., Levin, H. R., Gallant, E. M., Ashton, R. C., Jr., Seo, S., D'Alessandro, D., Oz, M. C., and Oliver, J. A. (1997). Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95, 1122-1125.
114.Levraut, J., and Grimaud, D. (2003). Treatment of metabolic acidosis. Curr Opin Crit Care 9, 260-265.
115.Liaw, W. J., Chen, T. H., Lai, Z. Z., Chen, S. J., Chen, A., Tzao, C., Wu, J. Y., and Wu, C. C. (2005). Effects of a membrane-permeable radical scavenger, Tempol, on intraperitoneal sepsis-induced organ injury in rats. Shock 23, 88-96.
116.Lilleberg, J., Sundberg, S., Hayha, M., Akkila, J., and Nieminen, M. S. (1994). Haemodynamic dose-efficacy of levosimendan in healthy volunteers. Eur J Clin Pharmacol 47, 267-274.
117.Lilleberg, J., Ylonen, V., Lehtonen, L., and Toivonen, L. (2004). The calcium sensitizer levosimendan and cardiac arrhythmias: an analysis of the safety database of heart failure treatment studies. Scand Cardiovasc J 38, 80-84.
118.Macarthur, H., Westfall, T. C., Riley, D. P., Misko, T. P., and Salvemini, D. (2000). Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad Sci U S A 97, 9753-9758.
119.Maitra, S. R., Wojnar, M. M., and Lang, C. H. (2000). Alterations in tissue glucose uptake during the hyperglycemic and hypoglycemic phases of sepsis. Shock 13, 379-385.
120.Mangano, D. T., Layug, E. L., Wallace, A., and Tateo, I. (1996). Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Research Group. N Engl J Med 335, 1713-1720.
121.Marik, P. E., and Varon, J. (1998). The hemodynamic derangements in sepsis: implications for treatment strategies. Chest 114, 854-860.
122.Marshall, J. C., Christou, N. V., Horn, R., and Meakins, J. L. (1988). The microbiology of multiple organ failure. The proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg 123, 309-315.
123.Martin, G. S., Mannino, D. M., Eaton, S., and Moss, M. (2003). The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348, 1546-1554.
124.Matot, I., and Sprung, C. L. (2001). Definition of sepsis. Intensive Care Med 27 Suppl 1, S3-9.
125.McCully, J. D., and Levitsky, S. (2003). The mitochondrial K(ATP) channel and cardioprotection. Ann Thorac Surg 75, S667-673.
126.McCuskey, R. S., Urbaschek, R., and Urbaschek, B. (1996). The microcirculation during endotoxemia. Cardiovasc Res 32, 752-763.
127.Michaels, A. D., McKeown, B., Kostal, M., Vakharia, K. T., Jordan, M. V., Gerber, I. L., Foster, E., and Chatterjee, K. (2005). Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake. Circulation 111, 1504-1509.
128.Moiseyev, V. S., Poder, P., Andrejevs, N., Ruda, M. Y., Golikov, A. P., Lazebnik, L. B., Kobalava, Z. D., Lehtonen, L. A., Laine, T., Nieminen, M. S., and Lie, K. I. (2002). Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur Heart J 23, 1422-1432.
129.Moncada, S., Palmer, R. M., and Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43, 109-142.
130.Moore, F. A. (1999). The role of the gastrointestinal tract in postinjury multiple organ failure. American journal of surgery 178, 449-453.
131.Nagata, T., Kishi, H., Liu, Q. L., Yoshino, T., Matsuda, T., Jin, Z. X., Murayama, K., Tsukada, K., and Muraguchi, A. (2000). Possible involvement of cyclophilin B and caspase-activated deoxyribonuclease in the induction of chromosomal DNA degradation in TCR-stimulated thymocytes. J Immunol 165, 4281-4289.
132.Nakajima, Y., Baudry, N., Duranteau, J., and Vicaut, E. (2006). Effects of vasopressin, norepinephrine, and L-arginine on intestinal microcirculation in endotoxemia. Crit Care Med 34, 1752-1757.
133.Nathan, C. F. (1987). Secretory products of macrophages. J Clin Invest 79, 319-326.
134.Nieminen, M. S., Akkila, J., Hasenfuss, G., Kleber, F. X., Lehtonen, L. A., Mitrovic, V., Nyquist, O., and Remme, W. J. (2000). Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J Am Coll Cardiol 36, 1903-1912.
135.Nobel, C. S., Kimland, M., Nicholson, D. W., Orrenius, S., and Slater, A. F. (1997). Disulfiram is a potent inhibitor of proteases of the caspase family. Chem Res Toxicol 10, 1319-1324.
136.Norman, J. G., Sutton, E. T., Franz, M. S., and Baker, C. H. (1995). Maintenance of dynamic microvascular function and structure in a rat model of endotoxic shock by blockade of the interleukin-1 receptor. Shock 3, 369-375.
137.O'Rourke, B. (2000). Myocardial K(ATP) channels in preconditioning. Circ Res 87, 845-855.
138.Okusawa, S., Gelfand, J. A., Ikejima, T., Connolly, R. J., and Dinarello, C. A. (1988). Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. The Journal of clinical investigation 81, 1162-1172.
139.Oldenburg, O., Cohen, M. V., Yellon, D. M., and Downey, J. M. (2002). Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 55, 429-437.
140.Oldner, A., Konrad, D., Weitzberg, E., Rudehill, A., Rossi, P., and Wanecek, M. (2001). Effects of levosimendan, a novel inotropic calcium-sensitizing drug, in experimental septic shock. Crit Care Med 29, 2185-2193.
141.Opferman, J. T., and Korsmeyer, S. J. (2003). Apoptosis in the development and maintenance of the immune system. Nat Immunol 4, 410-415.
142.Otero-Anton, E., Gonzalez-Quintela, A., Lopez-Soto, A., Lopez-Ben, S., Llovo, J., and Perez, L. F. (2001). Cecal ligation and puncture as a model of sepsis in the rat: influence of the puncture size on mortality, bacteremia, endotoxemia and tumor necrosis factor alpha levels. Eur Surg Res 33, 77-79.
143.Pagel, P. S., Hettrick, D. A., and Warltier, D. C. (1996a). Comparison of the effects of levosimendan, pimobendan, and milrinone on canine left ventricular-arterial coupling and mechanical efficiency. Basic Res Cardiol 91, 296-307.
144.Pagel, P. S., Hettrick, D. A., and Warltier, D. C. (1996b). Influence of levosimendan, pimobendan, and milrinone on the regional distribution of cardiac output in anaesthetized dogs. Br J Pharmacol 119, 609-615.
145.Pagel, P. S., McGough, M. F., Hettrick, D. A., Lowe, D., Tessmer, J. P., Jamali, I. N., and Warltier, D. C. (1997). Levosimendan enhances left ventricular systolic and diastolic function in conscious dogs with pacing-induced cardiomyopathy. J Cardiovasc Pharmacol 29, 563-573.
146.Palmer, R. M., Ferrige, A. G., and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526.
147.Palmer, R. M., Rees, D. D., Ashton, D. S., and Moncada, S. (1988). L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153, 1251-1256.
148.Parker, M. M., Shelhamer, J. H., Bacharach, S. L., Green, M. V., Natanson, C., Frederick, T. M., Damske, B. A., and Parrillo, J. E. (1984). Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100, 483-490.
149.Parrillo, J. E., Parker, M. M., Natanson, C., Suffredini, A. F., Danner, R. L., Cunnion, R. E., and Ognibene, F. P. (1990). Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113, 227-242.
150.Pataricza, J., Hohn, J., Petri, A., Balogh, A., and Papp, J. G. (2000). Comparison of the vasorelaxing effect of cromakalim and the new inodilator, levosimendan, in human isolated portal vein. J Pharm Pharmacol 52, 213-217.
151.Pataricza, J., Krassoi, I., Hohn, J., Kun, A., and Papp, J. G. (2003). Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther 17, 115-121.
152.Perkash, I., Satpati, P., Agarwal, K. C., Chakravarti, R. N., and Chhuttani, P. N. (1970). Prolonged peritoneal lavage in fecal peritonitis. Surgery 68, 842-845.
153.Pinto, B. B., Rehberg, S., Ertmer, C., and Westphal, M. (2008). Role of levosimendan in sepsis and septic shock. Curr Opin Anaesthesiol 21, 168-177.
154.Preiser, J. C., Zhang, H., Wachel, D., Boeynaems, J. M., Buurman, W., and Vincent, J. L. (1994). Is endotoxin-induced hypotension related to nitric oxide formation? Eur Surg Res 26, 10-18.
155.Quezado, Z. M., and Natanson, C. (1992). Systemic hemodynamic abnormalities and vasopressor therapy in sepsis and septic shock. Am J Kidney Dis 20, 214-222.
156.Rees, D. D., Palmer, R. M., and Moncada, S. (1989). Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86, 3375-3378.
157.Remick, D. G., Call, D. R., Ebong, S. J., Newcomb, D. E., Nybom, P., Nemzek, J. A., and Bolgos, G. E. (2001). Combination immunotherapy with soluble tumor necrosis factor receptors plus interleukin 1 receptor antagonist decreases sepsis mortality. Critical care medicine 29, 473-481.
158.Rudiger, A., Gasser, S., Fischler, M., Hornemann, T., von Eckardstein, A., and Maggiorini, M. (2006). Comparable increase of B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide levels in patients with severe sepsis, septic shock, and acute heart failure. Crit Care Med 34, 2140-2144.
159.Ruetten, H., Thiemermann, C., and Vane, J. R. (1996). Effects of the endothelin receptor antagonist, SB 209670, on circulatory failure and organ injury in endotoxic shock in the anaesthetized rat. British journal of pharmacology 118, 198-204.
160.Salvemini, D. (1997). Regulation of cyclooxygenase enzymes by nitric oxide. Cell Mol Life Sci 53, 576-582.
161.Sandell, E. P., Hayha, M., Antila, S., Heikkinen, P., Ottoila, P., Lehtonen, L. A., and Pentikainen, P. J. (1995). Pharmacokinetics of levosimendan in healthy volunteers and patients with congestive heart failure. J Cardiovasc Pharmacol 26 Suppl 1, S57-62.
162.Sato, S., Talukder, M. A., Sugawara, H., Sawada, H., and Endoh, M. (1998). Effects of levosimendan on myocardial contractility and Ca2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-1-loaded single ventricular cardiomyocytes of the rabbit. J Mol Cell Cardiol 30, 1115-1128.
163.Scheiermann, P., Ahluwalia, D., Hoegl, S., Dolfen, A., Revermann, M., Zwissler, B., Muhl, H., Boost, K. A., and Hofstetter, C. (2009). Effects of intravenous and inhaled levosimendan in severe rodent sepsis. Intensive Care Med 35, 1412-1419.
164.Schmidt, H. H., Nau, H., Wittfoht, W., Gerlach, J., Prescher, K. E., Klein, M. M., Niroomand, F., and Bohme, E. (1988). Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol 154, 213-216.
165.Schrauwen, E., Vandeplassche, G., Laekeman, G., and Houvenaghel, A. (1984). Endotoxic shock in the piglet: beneficial effects of prostaglandin synthesis inhibition. Prostaglandins, leukotrienes, and medicine 13, 271-278.
166.Shindoh, C., Dimarco, A., Nethery, D., and Supinski, G. (1992). Effect of PEG-superoxide dismutase on the diaphragmatic response to endotoxin. The American review of respiratory disease 145, 1350-1354.
167.Siggaard-Andersen, O., and Fogh-Andersen, N. (1995). Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand Suppl 107, 123-128.
168.Silverman, H. J., Penaranda, R., Orens, J. B., and Lee, N. H. (1993). Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21, 31-39.
169.Slawsky, M. T., Colucci, W. S., Gottlieb, S. S., Greenberg, B. H., Haeusslein, E., Hare, J., Hutchins, S., Leier, C. V., LeJemtel, T. H., Loh, E., et al. (2000). Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Study Investigators. Circulation 102, 2222-2227.
170.Sung, J., Bochicchio, G. V., Joshi, M., Bochicchio, K., Tracy, K., and Scalea, T. M. (2005). Admission hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma 59, 80-83.
171.Supinski, G., Nethery, D., and DiMarco, A. (1993). Effect of free radical scavengers on endotoxin-induced respiratory muscle dysfunction. The American review of respiratory disease 148, 1318-1324.
172.Szabo, C., Salzman, A. L., and Ischiropoulos, H. (1995). Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS letters 363, 235-238.
173.Szabo, C., Wu, C. C., Gross, S. S., Thiemermann, C., and Vane, J. R. (1993). Interleukin-1 contributes to the induction of nitric oxide synthase by endotoxin in vivo. Eur J Pharmacol 250, 157-160.
174.Szaflarski, N., and Hanson, C. W., 3rd (1997). Metabolic acidosis. AACN Clin Issues 8, 481-496.
175.Szilagyi, S., Pollesello, P., Levijoki, J., Kaheinen, P., Haikala, H., Edes, I., and Papp, Z. (2004). The effects of levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and phosphodiesterase enzymes of the guinea pig. Eur J Pharmacol 486, 67-74.
176.Takahashi, R., Talukder, M. A., and Endoh, M. (2000). Inotropic effects of OR-1896, an active metabolite of levosimendan, on canine ventricular myocardium. Eur J Pharmacol 400, 103-112.
177.Takakura, K., Taniguchi, T., Muramatsu, I., Takeuchi, K., and Fukuda, S. (2002). Modification of alpha1 -adrenoceptors by peroxynitrite as a possible mechanism of systemic hypotension in sepsis. Crit Care Med 30, 894-899.
178.Tavernier, B., Garrigue, D., Boulle, C., Vallet, B., and Adnet, P. (1998). Myofilament calcium sensitivity is decreased in skinned cardiac fibres of endotoxin-treated rabbits. Cardiovasc Res 38, 472-479.
179.Tavernier, B., Mebazaa, A., Mateo, P., Sys, S., Ventura-Clapier, R., and Veksler, V. (2001). Phosphorylation-dependent alteration in myofilament Ca2+ sensitivity but normal mitochondrial function in septic heart. Am J Respir Crit Care Med 163, 362-367.
180.Taylor, J. H., and Beilman, G. J. (2005). Hyperglycemia in the intensive care unit: no longer just a marker of illness severity. Surg Infect (Larchmt) 6, 233-245.
181.Terashita, Z., Imura, Y., Nishikawa, K., and Sumida, S. (1985). Is platelet activating factor (PAF) a mediator of endotoxin shock? Eur J Pharmacol 109, 257-261.
182.Thiemermann, C., and Vane, J. (1990). Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182, 591-595.
183.Toller, W. G., and Stranz, C. (2006). Levosimendan, a new inotropic and vasodilator agent. Anesthesiology 104, 556-569.
184.Tracey, K. J., and Cerami, A. (1993). Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 9, 317-343.
185.van den Berghe, G., Wouters, P., Weekers, F., Verwaest, C., Bruyninckx, F., Schetz, M., Vlasselaers, D., Ferdinande, P., Lauwers, P., and Bouillon, R. (2001). Intensive insulin therapy in the critically ill patients. N Engl J Med 345, 1359-1367.
186.van der Poll, T. (2001). Immunotherapy of sepsis. Lancet Infect Dis 1, 165-174.
187.Victor, V. M., Rocha, M., Esplugues, J. V., and De la Fuente, M. (2005). Role of free radicals in sepsis: antioxidant therapy. Curr Pharm Des 11, 3141-3158.
188.Vincent, J. L. (2008). Clinical sepsis and septic shock--definition, diagnosis and management principles. Langenbecks Arch Surg 393, 817-824.
189.Wang, P., Wood, T. J., Zhou, M., Ba, Z. F., and Chaudry, I. H. (1996). Inhibition of the biologic activity of tumor necrosis factor maintains vascular endothelial cell function during hyperdynamic sepsis. J Trauma 40, 694-700; discussion 701-691.
190.Wang, Q. Z., Jacobs, J., DeLeo, J., Kruszyna, H., Kruszyna, R., Smith, R., and Wilcox, D. (1991). Nitric oxide hemoglobin in mice and rats in endotoxic shock. Life Sci 49, PL55-60.
191.Webster, N. R., and Nunn, J. F. (1988). Molecular structure of free radicals and their importance in biological reactions. Br J Anaesth 60, 98-108.
192.Weiss, S. J. (1989). Tissue destruction by neutrophils. N Engl J Med 320, 365-376.
193.Wenzel, R. P. (1988). The mortality of hospital-acquired bloodstream infections: need for a new vital statistic? Int J Epidemiol 17, 225-227.
194.Wesche, D. E., Lomas-Neira, J. L., Perl, M., Chung, C. S., and Ayala, A. (2005). Leukocyte apoptosis and its significance in sepsis and shock. J Leukoc Biol 78, 325-337.
195.White, K., and Steller, H. (1995). The control of apoptosis in Drosophila. Trends Cell Biol 5, 74-78.
196.Wichterman, K. A., Baue, A. E., and Chaudry, I. H. (1980). Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res 29, 189-201.
197.Wixson, S. K., White, W. J., Hughes, H. C., Jr., Lang, C. M., and Marshall, W. K. (1987). The effects of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam on arterial blood pH, blood gases, mean arterial blood pressure and heart rate in adult male rats. Laboratory animal science 37, 736-742.
198.Worthen, G. S., Haslett, C., Rees, A. J., Gumbay, R. S., Henson, J. E., and Henson, P. M. (1987). Neutrophil-mediated pulmonary vascular injury. Synergistic effect of trace amounts of lipopolysaccharide and neutrophil stimuli on vascular permeability and neutrophil sequestration in the lung. The American review of respiratory disease 136, 19-28.
199.Yang, F., Comtois, A. S., Fang, L., Hartman, N. G., and Blaise, G. (2002). Nitric oxide-derived nitrate anion contributes to endotoxic shock and multiple organ injury/dysfunction. Crit Care Med 30, 650-657.
200.Yang, X., Oswald, L., and Wand, G. (2003). The cyclic AMP/protein kinase A signal transduction pathway modulates tolerance to sedative and hypothermic effects of ethanol. Alcohol Clin Exp Res 27, 1220-1225.
201.Yet, S. F., Pellacani, A., Patterson, C., Tan, L., Folta, S. C., Foster, L., Lee, W. S., Hsieh, C. M., and Perrella, M. A. (1997). Induction of heme oxygenase-1 expression in vascular smooth muscle cells. A link to endotoxic shock. The Journal of biological chemistry 272, 4295-4301.
202.Yokoshiki, H., Katsube, Y., Sunagawa, M., and Sperelakis, N. (1997a). Levosimendan, a novel Ca2+ sensitizer, activates the glibenclamide-sensitive K+ channel in rat arterial myocytes. Eur J Pharmacol 333, 249-259.
203.Yokoshiki, H., Katsube, Y., Sunagawa, M., and Sperelakis, N. (1997b). The novel calcium sensitizer levosimendan activates the ATP-sensitive K+ channel in rat ventricular cells. J Pharmacol Exp Ther 283, 375-383.
204.Yokoshiki, H., and Sperelakis, N. (2003). Vasodilating mechanisms of levosimendan. Cardiovasc Drugs Ther 17, 111-113.
205.Yu, L., Gengaro, P. E., Niederberger, M., Burke, T. J., and Schrier, R. W. (1994). Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci U S A 91, 1691-1695.
206.Zager, R. A., Johnson, A. C., Lund, S., Hanson, S. Y., and Abrass, C. K. (2006). Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol 290, F1453-1462.
207.Zaloga, G. P., Washburn, D., Black, K. W., and Prielipp, R. (1993). Human sepsis increases lymphocyte intracellular calcium. Crit Care Med 21, 196-202.
208.Zenni, G. C., McLane, M. P., Law, W. R., and Raymond, R. M. (1992). Hepatic insulin resistance during chronic hyperdynamic sepsis. Circ Shock 37, 198-208.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top