跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃彥隆
研究生(外文):Huang, Yen-Loung
論文名稱:載具氣動噪音之數值分析
論文名稱(外文):Numerical Analysis of Vehicle’s Airoacoustic
指導教授:戴昌賢戴昌賢引用關係蔡建雄蔡建雄引用關係
指導教授(外文):Tai, Chang-HsienTsai, Chien-Hsiung
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:124
中文關鍵詞:風噪FWHDES後導流板
外文關鍵詞:Dynamic NoiseFWHDESTail Fin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文針對汽車外流場之氣流特性,採用FLUENT軟體來分析汽車外流場的氣動參數以及噪音參數之情形。研究內容包括:首先針對基本氣動力流場與噪音預測之數值方法做基本的比對驗證,其後再接續分析較複雜的結構外型以及流場環境,對不同外型的後照鏡以及不同外型的導流板之汽車外流場,深入研究氣流壓力、速度與噪音流場等關鍵參數,對汽車行駛之穩定性與氣動誘發噪音進行比較及討論,並分析其優劣處。研究結果顯示:使用DES紊流模式之噪音預測分析之結果雖然在精度上略遜於LES紊流模式,但由於其計算時間較少,因此在工程應用或是噪音初步評估上亦是可行之方式;改變後照鏡表面外型使得噪音頻譜有所變化,後照鏡表面越平滑,噪音值表現更佳;最後,研究中也提出一具有高速行駛穩定性與最低噪音之最佳化設計的導流板。

This thesis plans to use a code that combines fluid and acoustic simulation. The parameters in the near field of sound are computed by FLUENT that is a CFD solver with various turbulent models and the far field sound intensity, that are governed by the Ffowcs-Williams and Hawkins equation (FW-H). There are three steps in the task. The first stage is to demonstrate the numerical package to predict aero-noise of the incompressible flow, through simple 3D geometry sample models are used for validation. The second stage is to reform the numerical package accuracy and efficient, and apply to side view mirror and road vehicle. The present simulation results are found to be in good agreement with the published experimental results. At engineering environment, DES model is an acceptable technique except LES model predicting aero-noise. Aero-noise of rough side view mirror is louder than smooth one.The results indicate that the installation of an appropriately angled tail fin reduces the aerodynamic lift coefficient, and hence improves the vertical stability of the vehicle under high speed driving conditions. Furthermore, it is shown that the use of an end plate reduces the noise profile behind the car. The present steady also proposed an optimal tail fin / end plate configuration, which possesses enhanced aerodynamic characteristics and aero-acoustic properties, and hence improves driver safety and comfort.

摘要..........................................................I
Abstract.....................................................II
誌謝........................................................III
目錄.........................................................IV
表目錄.....................................................VIII
圖目錄.......................................................IX
1. 緒論.......................................................1
1.1 研究動機與背景............................................1
1.2 文獻回顧..................................................9
1.2.1 氣動性能實驗量測方法....................................9
1.2.2 氣動性能數值分析方法....................................9
1.2.3 噪音實驗量測方法.......................................10
1.2.4 噪音數值分析方法.......................................12
1.2.5 數值氣動噪音分析之噪音改良應用.........................15
1.3 研究方法.................................................18
1.4 預期遭遇之困難...........................................19
2. 數值分析..................................................20
2.1 統御方程式...............................................20
2.2 紊流模式.................................................21
2.2.1 k-ε紊流模式............................................22
2.2.2 Spalart-Allmaras紊流模式...............................23
2.2.2.1 Spalart-Allmaras 模式的傳輸方程式....................23
2.2.2.2 紊流黏度的建立.......................................24
2.2.2.3 紊流產物的建立.......................................24
2.2.2.4 紊流消散項的建立.....................................25
2.2.3 Detached Eddy Simulation (DES)紊流模式.................25
2.2.4 Large eddy simulation(LES)紊流模式.....................26
2.2.4.1 濾波Navier-Stokes方程式..............................26
2.2.4.2 次網格模式(Sub Grid Models)..........................27
2.2.4.3 Smagorinsky-Lilly模式................................27
2.3 遠場噪音數值模式.........................................28
2.3.1 Lighthill’s聲學近似模式...............................28
2.3.2 Ffowcs-Williams and Hawkins方程式......................29
2.4 數值方法.................................................30
2.4.1 擴散項(Diffusion Terms) ...............................31
2.4.2 對流項(Advection Terms)................................31
2.4.3 矩陣方程式求解.........................................31
2.4.4 速度與壓力間之耦合算法(Velocity-pressure Coupling
Algorithm) ..................................................32
3. 研究構型、格點與流場特徵描述..............................34
3.1 幾何構型與格點分佈.......................................34
3.2 邊界條件.................................................34
3.3 物件規格.................................................38
3.4 噪音探測點...............................................44
4. 後照鏡個案分析與討論......................................47
4.1 數值穩定度...............................................47
4.1.1 程式驗證...............................................47
4.1.2 格點數選擇.............................................54
4.1.3 疊代次數選擇...........................................54
4.2 後照鏡驗證組分析與討論...................................56
4.3 後照鏡案例1分析與討論....................................69
4.4 後照鏡案例2分析與討論....................................73
5. 汽車後導流板個案分析與討論................................77
5.1 汽車後導流板案例1分析與討論..............................77
5.2 汽車後導流板案例2分析與討論..............................80
5.3 汽車後導流板案例3分析與討論..............................84
5.4 汽車後導流板案例4分析與討論..............................88
5.5 汽車後導流板案例5分析與討論..............................94
5.6 汽車後導流板案例6分析與討論.............................100
6. 結論與建議...............................................108
6.1 後照鏡個案結論..........................................108
6.2 汽車後導流板個案結論....................................109
6.3 建議....................................................111
參考文獻....................................................113
符號索引....................................................117
附錄........................................................119
1. 聲源介紹.................................................119
1.1 壁面偶極聲源之輻射......................................119
1.2 壁面偶極子源效力........................................119
2. 聲的量度與聽覺特性.......................................120
2.1 聲壓級、聲強級與聲功率級................................120
2.2 分貝的相加與相減........................................121
2.3 聲音的頻譜與計權聲級....................................121
作者簡介....................................................124

[1]小林敏雄, 1997, 農呎隆秀, “自動車空力技術與設計,” pp.113- 148,朝倉書店.
[2]王懷柱, 1996, “揭開飛行的奧秘,” 全華科技圖書出版社.
[3]李添財, 1999, “汽車空氣動力學,” 全華科技圖書股份有限公司.
[4]杜廣生, 1999, “汽車空氣動力學,” 中國標準出版社.
[5]林三益, 黃百毅, 溫晟淯, 1996, “圓柱流場之噪音分析,” 第四
屆全國計算流體力學學術研討會, pp.551-560.
[6]林國楨, 李雲楓, 2003, “貨車加裝導風板與風阻之數值模擬分
析,” CSME, pp.233-240.
[7]黃向東編著, 2000, “汽車空氣動力學與車身造型,” pp.85-93, 人
民交通出版社.
[8]張金龍, 戴昌賢, 蔡建雄, 2003.10, “車輛後導流板對車體流場之
穩定性分析,” 第八屆車輛工程研討會.
[9]戴昌賢, 苗志銘, 2001.6, ”聯結貨櫃車之流場數值分析研究,” 屏
東科技大學學報.
[10]Bakeer, C. J. and Humphreys, N. D., 1996, “Assessment of
obtain aerodynamic data for ground vehicles in cross
winds,” Journal of wind engineering and industrial
aerodynamics, Vol 66, pp.49-68.
[11]Bergamini, P., Casella, M. and Vitali, D. F., 1997,
“Computational Prediction of Vehicle Aerodynamic Noise by
Integration of a CFD Technique with Lightill’s Acoustic
Analogy,” SAE, 970401.
[12]BiPin, L., Sandeep, S. and Jieyong, X., 2003,
“Computational Aero-acoustic Analysis of a Generic Side
View Mirror,” SAE 2003-01-1698.
[13]Bruce, R. M., Donald, F. Y. and Theodore, H. O., 1996,
“Fundamentals of Fluid Mechanics,” pp.551-597, 2nd
edition.
[14]Callister, J. R. and George, A. R., 1998, “Wind noise in
Aerodynamics of Road Vehicles,” SAE International,
Warrendale, PA.
[15]Chometon, F. and Gillieron, P., 1996, “A Survey of
Improved Techniques for Analysis of 3D Separated Flowa in
Automotive Aerodynamics,” SAE paper, NO.960680, pp. 820-
835.
[16]Coleman, S. A. and Humphreys, N. D., 1994, “An
experimental study of the Aerodynamic Behavior of High
Sided Lorries in Cross Winds,” Journal of Wind
Engineering and Industrial Aerodynamics, Vol 53. pp. 401-
429.
[17]Deufrako, A. K., 1994, final report, German-French
Cooperation.
[18]Ffowcs-Williams, J. E. and Hawkins, D. L., 1969, “Sound
generation by turbulence and surfaces in arbitrary
motion,” Proceedings of the Royal Society of London A,
vol. 264, pp. 321-342.
[19]Fluent Inc., 2002, “Aero-Noise Predi ion of Flow Across
a Circular Cylinder,” Fluent 6.1 Tutorial Guide.
[20]Freund, J. B., Lele, S. K. and Moin, P.,1993, “Matching
of Near/Far Field Equation Sets for Direct Computations of
Aerodynamic Sound, ” AIAA paper 93-4326, AIAA 15th
Aeroacoustics Conference, Long Beach, CA.
[21]Fukushima, T., 1996, “Development of a Numerical Analysis
System for Car Aerodynamic Noise,” 95 Spring Convention
Proceedings of JSAE, NO.953.
[22]Grun, N. B., 1996, “Simulations External Vehicle
Aerodynamics with Carflow,” SAE paper, NO. 960679, pp.836-
853.
[23]Han, T. Y., Sumantran, V., Harris, C., Kuzmanov, T.,
Huebler, M. and Zak, T. M., 1996, “Flow-field Simulations
of three Simplified Vehicle Shapes and Comparisons with
Experimental Measurements,” SAE paper, NO. 960678, pp.820-
835.
[24]Haruna, S. and Uesaka, M., 1990, “Numerical Simulation of
Aerodynamic Noise by Two-Dimensional Wing,” 90 Spring
Convention Proceedings of JSAE, NO.901022.
[25]Heinrich, W., 1987, “Aerodynamics of Road Vehicles,”
pp.274-282.
[26]Howell, J. and Hickman, D., 1997, “The Influence of
Ground Simulation on the Aerodynamics of a Simple Car
Model,” SAE paper, NO., 970134, pp. 19-28.
[27]Jassen, L. J. and Hucho, W. H., 1975, “Aerodynamische
Entwicklung von VW Glof und VW Scirocco,” ATZ, Vlo.77,
pp.1-5.
[28]Kestin, J., 1984, “Boundary Layer Theory,” pp.171-172.
[29]Koike, M., Sonoda, Y. and Miura, T., 1993, “Analysis of
wind Throb in Vehicles,” Transactions of JSAE.Vol.24,
NO.2.
[30]Lighthill, M. J., 1952, “On Sound generated
Aerodynamically,” Vol. I- General Theory, Proceeding of
the Royal Society, London Vol. 221A, pp. 564-587.
[31]Lim, T. B., Sankar, L. N., Hariharan, N., Reddy, N. N.,
Freund, J. B., Lele, S. K., and Moin, P., 1993, “A
technique for Prediction of Propeller Induced Acoustic
Loads on Aircraft Structures, ” AIAA paper 93-4340,,AIAA
15th Aeroacoustics Conference, Long Beach, CA.
[32]Lyrintzis, A. S., 1994, “The Use of Kirchhoff’s Method
in Computational Aeroacoustics,” Journal of Fluid
Engineering,Vol. 116, pp.665-676.
[33]Mariani, J. D., Zilliac, G. G., Chow, J. S. and Bradshaw,
P., 1995, “Numerical / Experimental Study of a Wingtip
Vortex in the Near Field. AIAA Journal,” pp.1561-1568.
[34]Ogawa, S., 1994, “Generation Mechanism and Prediction of
Aerodynamic Noise,” JSAE, Vol.48.
[35]Ogawa, S. and Kamioka, T., 1999, “Review of Aerodynamic
Noise Prediction Using CFD,” SAE 1999-01-1126.
[36]Okumura, K. J. and Kuriyama, T., 1997, “Transient
Aerodynamic Simulation in Crosswind and passing an
Automobile,” SAE paper, NO. 970404, pp.141-156.
[37]Phillips, O. M., 1960, “On the generations of sound by
supersonic Turbulent Shear Layers,” Journal of Fluid
Mechanics, Vol.9, pp.1-28.
[38]Ramnefors, M., Bensryd, R. K., Holmberg, E. and Perzon,
S., 1996, “Accuracy of Drag Prediction on Cars Using CFD-
Effect of Grid Refinement and Turbulence Models,” SAE
paper, NO. 960681, pp.865-871.
[39]Shimazaki, M. and Katzer, R. J., 1991, “Steady of Wind
Noise at Parting Structure,” Nissan Technical Report.
[40]Shur, M., Spalart, P. R., Strelets, M. and Travin, A.,
1999, “Detached-Eddy Simulation of an Airfoil at High
Angle of Attack” In 4th Int, Symposium on Eng. Turb.
Modeling and Experiments, Corsica, France.
[41]Talotte, C., 2000, “Aerodynamic Noise: A Critical
Survey,” Journal of Sound and Vibration, Vol. 231, No. 3,
pp. 549-562.
[42]Tam, C. K. W., 2002, “Computational aeroacoustics: An
overview,” 10th Annual Conference of the CFD Society of
Canada, Windsor ON, Canada, June 9 —11.
[43]Tam, K. W. and Webb, J. C., 1994, “Dissipation Relation
Preserving Limit Difference Schemes for Computational
Aeroacoustics,” Journal of Fluid Engineering, Vol. 116,
pp.665-676.
[44]Uchida, K. Y. and Okumura, K. J., 1997, Toshihiko Kuriyama
Daihatsu Motor Co. Ltd, “Aerodynamic Simulations by Using
Discontinuous Interface Grid and Solution Adaptive Grid
Method,” SAE paper, NO. 970141, pp. 87-92.
[45]Viswanathan, K., Sankar, L. K. and Reddy, N. N., 1994, “A
Fluid/Acoustic Coupled Simulation of Supersonic Jet
Noise, ” AIAA paper 94-0137, AIAA 32nd Aeroacoustics
Science Meeting, Reno.
[46]Yamane, K. S., Hase, N. B., Fujita, S. F., Isomura, R. and
Keiji, S. T., 1997, Ikuya Takeda Aisin Seiki Co. Ltd. and
Toshiyuki Murayama Torotal Motor Corp., “Concurrent CFD
Analysis for development of rear spoiler for Hatchback
Vehicles,” SAE paper, NO. 970410, pp. 213-220.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文