跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李雨茜
研究生(外文):Yu-Chien Li
論文名稱:以支援向量機為基礎分類器之新高效隨機子空間信用評等模型
論文名稱(外文):Efficient Noval SVM Random Subspace Framework for Credit Scoring
指導教授:黃孝雲黃孝雲引用關係
指導教授(外文):Hsiao-Yun Huang
口試委員:陳尚寬盧宏益
口試委員(外文):Shang-Kuan ChenHung-Yi Lu
口試日期:2012-06-11
學位類別:碩士
校院名稱:輔仁大學
系所名稱:統計資訊學系應用統計碩士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:信用評等支援向量機隨機子空間
外文關鍵詞:credit scoringSVMrandom subspace method
相關次數:
  • 被引用被引用:2
  • 點閱點閱:525
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
信用風險評估在近年來已成為金融風險管理中重要的課題,而信用評分模型為銀行降低信貸風險並減少呆帳產生之損失的常見方法,在過去研究中大多使用羅吉斯迴歸、決策樹和類神經網路建構模型,而擁有不錯分類能力的支援向量機在近年來也成為常見方法之一,但支援向量機有其缺點,在參數選擇需耗費相當大的時間與成本,且模型不具有解釋能力,因此本研究期望使用隨機子空間之概念結合支援向量機分類器建構信用評分模型,並在提升分類器表現的同時,尋找出重要之變數。本研究使用三家銀行信用卡資料集作為實驗資料,同時為了驗證本研究提出之方法有效性,並與支援向量機、羅吉斯迴歸、分類迴歸樹、類神經網路和隨機森林等分類方法相比較,實驗結果顯示本研究提出之方法擁有較高之分類正確率,並且計算出變數之重要性,有助於金融機構在審核信用卡時判斷顧客違約之可能性。
Credit risk assessment has become one of the most important issues in financial risk management. Analysts generally adopt a credit scoring model to insure the quality of admission evaluation and reduce the credit risk. Some researchers have used logistic regression, decision trees, and artificial neural network to build a credit scoring model. In addition, support vector machine is a powerful classification method with successful utilization in various fields. However, there parameter selection process of SVM is very time-consuming and SVM is a lack of interpretive ability method. Therefore, this study proposes a method to combine random subspace method and SVM to build the credit scoring model. Three credit datasets are selected as experimental data to demonstrate the accuracy of the proposed method. Experimental results show that the proposed method has highest accuracy and reveals the importance of variables effectively. It helps financial institutions to discriminate customers into groups with different risk patterns.
第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
第三節 研究流程 4
第貳章 相關方法與文獻探討 6
第一節 信用評等常見之分類法 6
壹、羅吉斯迴歸 6
貳、分類迴歸樹 7
參、隨機森林 8
肆、類神經網路 8
伍、支援向量機 10
第二節 信用評等之相關研究 14
第參章 研究提出之方法 17
第一節 問題闡述 17
第二節 解決方法 18
壹、隨機子空間法 18
貳、支援向量機方法之參數選擇 19
參、部分隨機子空間支援向量機 21
第三節 指標 24
第肆章 實證分析 26
第一節 資料描述 26
第二節 實驗設計 27
第三節 分析結果 28
壹、資料一之分析結果 29
貳、資料二之分析結果 33
參、資料三之分析結果 37
第伍章 結論與建議 41
參考文獻 43
附錄一 信用卡業務統計表 47
附錄二 信用卡資料集變數 48
附錄三 資料實證之結果 56
中文部分
林冶洋(2005)。銀行信用卡逾放比率之決定因素─以台灣之銀行為例。國立政治大學財政研究所碩士論文,台北市。
林金龍(2006)。國內當前雙卡債問題分析與探討─市場經濟下政府應發揮的職能。國立政治大學經營管理碩士論文,台北市。
林宸翊(2009)。應用於行為評等之Random forests及其變數選擇法。天主教輔仁大學應用統計研究所碩士論文,新北市。
莊瑞珠、陳穆貞(2006)。金融機構住宅房屋貸款信用評分系統之建構研究。住宅學報,15(2),65-90。
陳怡妃(2008)。新興分類技術於行為評等模式之建構。天主教輔仁大學商學研究所博士論文,新北市。
龔昶元(1998)。Logistic regression模式應用於信用卡信用風險審核之研究。台北銀行月刊,28(9),35-49。

英文部分
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. London: Chapman & Hall.
Chen, F. L. & Li, F. C. (2010). Combination of feature selection approaches with SVM in credit scoring. Expert Systems with Applications, 37(7), 4902-4909.
Desai, V. S., Convay, D. G., Crook, J. N., & Overstreet, G. A. (1997). Credit-scoring models in the credit-union environment using neural networks and genetic algorithms. IMA Journal of Mathematics Applied in Business and Industry, 8(4), 323-346.
Dietterich, T. G. (2000). Ensemble methods in machine learning. Lecture Notes in Computer Science, 1857, 1-15.
Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. URL http://archive.ics.uci.edu/ml.
Giacinto, G. & Roli, F. (2001). Design of effective neural network ensembles for image classification processes. Image and Vision Computing, 19(9-10), 699-707.
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8), 832-844.
Hsu, C. W., Chang, C. C., & Lin C. J. (2003). A practical guide to support vector classification, Last updated April 15, 2010. URL http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847-856.
Huang, H. Y., Shao, Y. E., Hou, C. D., & Hsieh, M. Da. (2011).Identifying the contributors of the multivariate variability control chart using hierarchical support vector machines. ICIC Express Letters, 5(9B), 3543-3547.
Kuncheva, L. I. & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2), 181-207.
Lee, T. S. & Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, 28(4), 743-752.
Lee, Y. C. (2007). Application of support vector machines to corporate credit rating prediction. Expert Systems with Applications, 33(1), 67-74.
Li, C. H., Ho, H. H., Liu, Y. L., Lin, C. T., Kuo, B. C., & Taur, J. S. (2012). An automatic method for selecting the parameter of the normalized kernel function to support vector machines. Journal of Information Science and Engineering, 28(1), 1-15.
Luo, S. T., Cheng, B. W., & Hsieh, C. H. (2009). Prediction model building with clustering-launched classification and support vector machines in credit scoring. Expert Systems with Applications, 36(4), 7562-7566.
McCulloch, W. S. & Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115-133.
Melgani, F. & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790.
Nanni, L. & Lumini, A. (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 36(2), 3028-3033.
Ohlson J. M. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.
Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scoring models using genetic programming. Expert Systems with Applications, 29(1), 41-47.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(9), 533-536.
Skurichina, M. & Duin, R. P. W. (2002). Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis & Applications, 5(2), 121-135.
Srinivisan, V. & Kim, Y. H. (1987). Credit granting: a comparative analysis of classification procedures. Journal of Finance, 42(3), 665-681.
Thomas, L. C. (2000). A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. International Journal of Forecasting, 16(2), 149-172.
Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit scoring and its applications. Philadephia: Society for industrial and applied mathematics.
Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer-Verlag.
Vapnik, V. & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24(6), 774-780.
West, D. (2000). Neural network credit scoring models. Computers and operations Research, 27(11-12), 1131-1152.
Yang, Y. (2007). Adaptive credit scoring with kernel learning method. European Journal of Operational Research, 183(3), 1521-1536.
Yule, G. U. (1900). On the association of attributes in statistics: with illustrations from the material of the childhood society, &c. Phil. Trans. R. Soc. Lond. A, 194, 257-319.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top