中文部分
林冶洋(2005)。銀行信用卡逾放比率之決定因素─以台灣之銀行為例。國立政治大學財政研究所碩士論文,台北市。林金龍(2006)。國內當前雙卡債問題分析與探討─市場經濟下政府應發揮的職能。國立政治大學經營管理碩士論文,台北市。林宸翊(2009)。應用於行為評等之Random forests及其變數選擇法。天主教輔仁大學應用統計研究所碩士論文,新北市。莊瑞珠、陳穆貞(2006)。金融機構住宅房屋貸款信用評分系統之建構研究。住宅學報,15(2),65-90。陳怡妃(2008)。新興分類技術於行為評等模式之建構。天主教輔仁大學商學研究所博士論文,新北市。龔昶元(1998)。Logistic regression模式應用於信用卡信用風險審核之研究。台北銀行月刊,28(9),35-49。
英文部分
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. London: Chapman & Hall.
Chen, F. L. & Li, F. C. (2010). Combination of feature selection approaches with SVM in credit scoring. Expert Systems with Applications, 37(7), 4902-4909.
Desai, V. S., Convay, D. G., Crook, J. N., & Overstreet, G. A. (1997). Credit-scoring models in the credit-union environment using neural networks and genetic algorithms. IMA Journal of Mathematics Applied in Business and Industry, 8(4), 323-346.
Dietterich, T. G. (2000). Ensemble methods in machine learning. Lecture Notes in Computer Science, 1857, 1-15.
Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. URL http://archive.ics.uci.edu/ml.
Giacinto, G. & Roli, F. (2001). Design of effective neural network ensembles for image classification processes. Image and Vision Computing, 19(9-10), 699-707.
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8), 832-844.
Hsu, C. W., Chang, C. C., & Lin C. J. (2003). A practical guide to support vector classification, Last updated April 15, 2010. URL http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847-856.
Huang, H. Y., Shao, Y. E., Hou, C. D., & Hsieh, M. Da. (2011).Identifying the contributors of the multivariate variability control chart using hierarchical support vector machines. ICIC Express Letters, 5(9B), 3543-3547.
Kuncheva, L. I. & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2), 181-207.
Lee, T. S. & Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, 28(4), 743-752.
Lee, Y. C. (2007). Application of support vector machines to corporate credit rating prediction. Expert Systems with Applications, 33(1), 67-74.
Li, C. H., Ho, H. H., Liu, Y. L., Lin, C. T., Kuo, B. C., & Taur, J. S. (2012). An automatic method for selecting the parameter of the normalized kernel function to support vector machines. Journal of Information Science and Engineering, 28(1), 1-15.
Luo, S. T., Cheng, B. W., & Hsieh, C. H. (2009). Prediction model building with clustering-launched classification and support vector machines in credit scoring. Expert Systems with Applications, 36(4), 7562-7566.
McCulloch, W. S. & Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115-133.
Melgani, F. & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790.
Nanni, L. & Lumini, A. (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 36(2), 3028-3033.
Ohlson J. M. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.
Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scoring models using genetic programming. Expert Systems with Applications, 29(1), 41-47.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(9), 533-536.
Skurichina, M. & Duin, R. P. W. (2002). Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis & Applications, 5(2), 121-135.
Srinivisan, V. & Kim, Y. H. (1987). Credit granting: a comparative analysis of classification procedures. Journal of Finance, 42(3), 665-681.
Thomas, L. C. (2000). A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. International Journal of Forecasting, 16(2), 149-172.
Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit scoring and its applications. Philadephia: Society for industrial and applied mathematics.
Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer-Verlag.
Vapnik, V. & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24(6), 774-780.
West, D. (2000). Neural network credit scoring models. Computers and operations Research, 27(11-12), 1131-1152.
Yang, Y. (2007). Adaptive credit scoring with kernel learning method. European Journal of Operational Research, 183(3), 1521-1536.
Yule, G. U. (1900). On the association of attributes in statistics: with illustrations from the material of the childhood society, &c. Phil. Trans. R. Soc. Lond. A, 194, 257-319.