跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:塗耕業
研究生(外文):Geng-Ye Tu
論文名稱:水泥漿體添加卜作嵐材料之水化特性研究
論文名稱(外文):Hydration Characteristic of Cement Paste Blended with Pozzolanic Materials
指導教授:陳豪吉陳豪吉引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:94
中文關鍵詞:卜作嵐水化水泥
外文關鍵詞:HydrationCementPozzolanic
相關次數:
  • 被引用被引用:10
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在探討添加卜作嵐摻料對水泥漿體水化特性之影響。首先,在改變水膠(灰)比、卜作嵐摻料取代水泥百分比及試驗齡期的條件下,針對三種系列漿體(即純水泥漿體(Ordinary Portland Cement Paste,簡稱OPC漿體)、飛灰-水泥漿體(Fly Ash-Cement Paste,簡稱FC漿體)以及爐石-水泥漿體(Slag-Cement Paste,簡稱SC漿體)),進行抗壓強度試驗、燒失量分析及MIP孔隙試驗。其次,探析試驗參數對各系列漿體抗壓強度、非蒸發水含量、Ca(OH)2含量、卜作嵐摻料反應程度、漿體孔隙之影響,並探討各種變因間的相互關係。最後,則分析與討論各項試驗結果間之關聯性,進而藉由所獲致的試驗數據建構其關係式。
研究結果顯示,隨著水膠比之增加,各系列水泥漿體的非蒸發水含量、CH含量、卜作嵐摻料反應、水泥水化程度及總孔隙量亦增加,但漿體的抗壓強度及膠體/空間比則降低;卜作嵐-水泥漿體的非蒸發水含量會隨著卜作嵐摻料取代水泥百分比之增加而減小;隨著齡期及水灰比的增加,OPC漿體的CH含量亦增加,而28天後的增長趨勢已逐漸平緩,FC與SC漿體的CH含量則是隨著卜作嵐摻料取代率及齡期的增加而減少;卜作嵐摻料的反應程度與漿體齡期及水膠比有關,在相同水膠比條件下,爐石的反應程度大於飛灰者;漿體孔隙量隨卜作嵐摻料取代率增加而增加,在低水膠比及低取代率條件下,卜作嵐摻料對漿體有較佳的填充性;膠體/空間比隨著卜作嵐摻料取代率的增加而降低,不論是FC漿體或SC漿體,在最大取代率時,其膠體/空間比降低幅度都遠較其他取代率者為大;在總孔隙量與抗壓強度及總孔隙量與膠體/空間比之相關性上,OPC漿體之相關係數最佳(其R2分別為0.9242及0.8845)。
The purpose of this research is to investigate the effects of adding pozzolanic materials on the hydration characteristics of the cement paste. First, for the conditions of varied experimental parameters including water-to-binder ratios(w/b), pozzolanic material replacements and testing ages, the compressive strength tests, the ignited loss analysis, and the MIP porosity measurements were conducted on three series of pastes— ordinary Portland cement (OPC) paste, fly ash-cement (FC) paste and slag-cement (SC) Paste. Second, the effects of experimental variables on compressive strength, non-evaporable water (wn) content, Ca(OH)2 content, degree of pozzolanic reaction and porosity of the three series of pastes were studied. The interaction existing in these variables was also assessed. Finally, the correlations between the results of each test would be analyzed and canvassed. The correlation formula would be further established according to the obtained experiment data.
Test results show that, for all series of pastes, with w/b increasing, wn content, Ca(OH)2 content, degree of pozzolanic reaction, degree of cement reaction, and porosity would increase. However, the compressive strength and the gel/space ratio of the pastes would decrease; For pozzolan-cement pastes, the wn content would decrease with the increase of the percentage of cement replaced by pozzolanic material; For OPC pastes, with the increase of age and w/b, the Ca(OH)2 content would increase, but after 28 days, the raising tendency has gradually slowed down. Nevertheless, the Ca(OH)2 content of FC and SC pastes would decrease with the age and the proportion of replacement increasing; The reaction degree of pozzolanic material is in connection with age and w/b. For the same w/b, the reaction degree of slag (14.7~40.3%) is higher than that of fly ash (3.1~28.3%); The porosity of paste would increase with the increase of pozzolanic material replacement. For lower w/b and replacement level, pozzolanic materials would have the better capability of filling pores; The gel/space ratio would decrease with the increase of the replacement of pozzolanic material. For both FC pastes and SC pastes, at the highest replacement level, the reduced extent of gel/space ratio would be significantly higher than that at the other replacement levels; As for the correlations between total pore volume and either compressive strength or gel/space ratio, OPC pastes possess the optimum correlation coefficients (R2 = 0.9242 & 0.8845).
中文摘要 I
ABSTRACT II
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究目的 1
1.3 研究方法 2
第二章 文獻回顧 4
2.1 水泥之化學組成及其水化 4
2.1.1 化學組成 4
2.1.2 水化反應 4
2.1.3 水化反應之發展過程(hydration process) 6
2.1.4 水化程度(Degree of Hydration) 7
2.2 水泥漿體之微結構 8
2.2.1 水泥漿體微結構發展過程 8
2.2.2 硬固水泥漿體之組成結構 9
2.2.3 水化期間各相之體積變化 13
2.3 卜作嵐材料 15
2.3.1 卜作嵐材料之定義及分類 15
2.3.2 卜作嵐材料之組成及性質 16
2.3.3 卜作嵐反應(pozzolanic reaction) 17
2.3.4 卜作嵐摻料對水泥水化之影響 17
2.3.5 卜作嵐摻料對漿體微結構之影響 20
第三章 試驗規劃 32
3.1 試驗參數 32
3.2 試驗材料 32
3.3 試驗儀器 33
3.4 試驗方法 33
3.4.1 試體製作 33
3.4.2 抗壓強度 34
3.4.3 燒失量分析 34
3.4.4 卜作嵐摻料反應程度 37
3.4.5 MIP孔隙試驗 39
第四章 試驗結果分析與討論 45
4.1 抗壓強度 45
4.2 非蒸發水含量 46
4.3 CA(OH)2含量 47
4.4 卜作嵐摻料反應程度 48
4.5 漿體孔隙 49
4.5.1 總孔隙量 49
4.5.2 孔隙分布 50
4.6 數據綜合分析 52
4.6.1 水泥水化程度 52
4.6.2 膠體/空間比 53
4.6.3 抗壓強度、總孔隙量及膠體/空間比間之關係 55
第五章 結論 90
參考文獻 92
[1]Mindess, S., J. F. Young, and D. Darwin. "Concrete. 2nd edition", Upper Saddle River, NJ: Prentice Hall, 2003.
[2]Van Breugel, K. "Simulation of hydration and formation of structure in hardening cement based materials", Thesis, 2nd version, Delft University Press, 1997.
[3]Taylor, H. F. W., "Cement Chemistry", Thomas Telford Publishing, London, 1997.
[4]Powers, T. C., "The Nonevaporable Water Content of Hardened Portland-Cement Paste–Its Significance for Concrete Research and Its Method of Determination", Research Department Bulletin RX029, Portland Cement Association, 1949.
[5]Portland Cement Association, "Design and Control of Concrete Mixtures" 14th Edition. PCA: Skokie, IL, 2002.
[6]Powers, T. C., "Some Physical Aspects of the Hydration of Portland Cement", Research Department Bulletin RX125, Portland Cement Association, 1961.
[7]Powers, T. C., and Brownyard, T. L., "Studies of the Physical Properties of Hardened Portland Cement Paste", Research Department Bulletin RX022, Portland Cement Association, 1947.
[8]Hewlett, P.C. (Ed.) "Lea’s Chemistry of Cement and Concrete", Arnold, 1998. (at Ref. Desk)
[9]Luke K, Glasser F P. "Selective dissolution of hydrated blast furnaces slag cements", Cement and Concrete Research, 1987, Vol.17, No.2, pp.273-282.
[10]S Ohsawa, K Asaga, S Goto and M. Daimon, "Quantitative Determination of Fly Ash in the Hydrated Fly Ash-CaSO4*2H2O-Ca(OH)2 System", Cement and Concrete Research, 1985, Vol.15, No.2, pp.357-366
[11]Koichi Maekawa, Rajesh Chaube, and Toshiharu Kishi, "Modelling of Concrete Performance: Hydration, Miscrostructure and Mass Transport", Taylor & Francis; 1 edition, June 28, 1999.
[12]Neville, A.M., "Properties of Concrete", Wiley, 1996.
[13]Lam, L. Wong, Y.L., and Poon, C.S., "Degree of hydration and gel/space ratio of high-volume fly ash/cement systems", Cement and Concrete Research, Vol.30, No.5, May, 2000, pp.747-756.
[14]Escalante Garcia, J.I., Gomez Zamorano L.Y., and Mendoza Suarez, G., "Reactivity of blast-furnace slag in Portland cement blends hydrated under. different conditions", Cement and Concrete Research, Vol. 3, 2001, pp.1403-1409.
[15]Young, J.F., and Hansen, W., "Volume Relationships for CSH Formation Based on Hydration Stoichiometry", Materials Research Society, Vol.85, 1987, pp.313-332.
[16]Escalante-Garcia, J.I.; Sharp, J.H., "Effect of temperature on the hydration of the main clinker phases in Portland cements: Part II, Blended cements", Cement and Concrete Research Vol.28, No.9, Sep, 1998, pp.1259-1274 .
[17]Mounanga, P., Khelidj, A., Loukili, A., and Baroghel-Bouny, V., "Predicting Ca(OH)2 Content and Chemical Shrinkage of Hydrating Cement Pastes Using Analytical Approach", Cement and Concrete Research, Vol.34, No.2, 2004, pp.255-265.
[18]Babu K. G., Rao G. S. N., "Efficiency of fly ash in concrete with age", Cement and Concrete Research, Vol.26, No.3, 1996, pp.465-474
[19]Cruz C.R., "Elastic Properties of Concrete at High Temperatures", PAC Research Bulletin, 1971.
[20]Ramachandran, V.S., "Concrete Admixtures Handbook-Properties, Science, and Technology",Noyes Publications, Park Ridge, New Jersey, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊