跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王信文
研究生(外文):Hsin-Wen Wang
論文名稱:環境因子對洋桔梗葉片頂燒與光合作用之影響
論文名稱(外文):Effects of Environmental Factors on Leaf Tipburn and Photosynthesis in Eustoma
指導教授:葉德銘葉德銘引用關係
口試委員:蔡智賢黃光亮張耀乾
口試日期:2015-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:102
中文關鍵詞:生理障礙蒸散速率
外文關鍵詞:physiologicl disordertranspiration rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
洋桔梗[Eustoma grandiflorum (Raf.) Shinn.]葉片頂燒(leaf tipburn)為缺鈣之生理障礙。展開中葉片之蒸散速率低與鈣分布不均為頂燒發生之重要原因,而花芽分化時亦將與展開中葉片競爭鈣而導致葉片頂燒。故本研究以洋桔梗‘國王淡紫’ (‘King of Orchid’)為材料,調查不同光度、溫度與相對濕度(relative humidity, RH)條件之頂燒發展情形。本研究中量測展開中葉片之蒸散速率與葉脈密度,以及觀察洋桔梗莖頂分生組織發育階段,期能了解洋桔梗頂燒發生之原因。另測定各種光度、溫度、蒸氣壓差(leaf to air vapor pressure deficit, VPD)與二氧化碳濃度下洋桔梗葉片之氣體交換速率,欲解釋不同環境條件下頂燒發生率與嚴重程度之差異。並觀察葉面噴施氯化鈣於減輕頂燒之效果,以供產業應用之參考。
本研究中將具有5對完全展開葉、營養生長之洋桔梗植株,於日夜溫36/23℃下,分成12組處理:先於中等相對濕度 (MRH; 76% RH, 206 μmol·m-2·s-1 PPF)1、3、5、7、9天後移至低相對濕度(LRH; 53% RH, 356 μmol·m-2·s-1 photosynthetic photon flux, PPF),與先於LRH 1、3、5、7、9天後移至MRH,以及處理期間皆在MRH或是LRH環境。植株於連續MRH處理中出現頂燒,而於連續LRH處理則無頂燒發生。於MRH處理5天時植株出現頂燒症狀,而於LRH處理期間並未發生頂燒,當移至MRH環境時才觀察到頂燒發生。
分別將具有4、6或8對完全展開葉片之植株,以36/23℃、76% RH (0.99 kPa VPD),植株高度光度為206 μmol·m-2·s-1 PPF處理。當植株具有4或6對完全展開葉,分別於處理第18天和第6.5天出現頂燒症狀;當植株具有8對完全展開葉,於處理第5天發生頂燒。
於90% RH、VPD為0.23至0.37 kPa環境下,將具有5對完全展開葉、營養生長之植株以36/23℃與25/18℃處理,分別於處理後之第10天與第18天,肉眼可見頂燒症狀出現於莖頂下數1至3對展開中葉片,以解剖顯微鏡可見莖頂分生組織已形成花萼與花瓣原體。於90% RH下,以36/23℃處理之頂燒發生率與單葉頂燒嚴重程度皆較23/18℃處理高;然而於74% RH下,不論是36/23℃和25/18℃處理皆無頂燒發生。於36/23℃和25/18℃,觀察到以90% RH處理較74% RH處理之莖頂下數第3對展開中葉片蒸散速率低、葉脈密度低,說明90% RH環境下因為鈣吸收與運輸受阻,因此易在葉緣與葉尖出現缺鈣之症狀。
將具有5對完全展開葉、營養生長之植株於日溫28至35℃、夜溫23℃,株高處光度介於205至444 μmol·m-2·s-1環境。當平均相對濕度由71% RH增加至91% RH、VPD自0.32 kPa增至1.19 kPa,頂燒發生率由50%升至100%,其中又以91% RH處理最早發生頂燒、平均全株嚴重程度最高。頂燒症狀出現至發生率達到高峰之天數約為8至14天,且隨著處理相對濕度提高而減少。
於環控條件下測量洋桔梗葉片氣體交換速率。在25℃時,成熟葉之暗呼吸速率為2.6 μmol·m-2·s-1,光補償點為18.2 μmol·m-2·s-1 PPF,而光量子產量為0.04 μmol CO2/μmol PPF。當成熟葉於400 μL·L-1 CO2下,最大淨光合速率為15至18.5 μmol·m-2·s-1,發生於800 μmol·m-2·s-1PPF,葉溫24℃至28℃,與0.48至1.08 kPa VPD;而CO2飽和點為686 μL·L-1,此時葉片之最大淨光合速率為22.5 μmol·m-2·s-1。在VPD為1.07 ± 0.08 kPa時,於光度0至1000 μmol·m-2·s-1 PPF間,蒸散速率維持在2.18至3.28 mmol·m-2·s-1,可見在VPD固定情況下,光度並不影響蒸散速率。固定VPD為1.2 ± 0.1 kPa,當葉溫由16℃升至30℃,蒸散速率也自3.09降至2.06 mmol·m-2·s-1。然而當VPD隨葉溫增加而自0.51 kPa升至4.06 kPa時,蒸散速率自1.60上升至5.25 mmol·m-2·s-1,顯示洋桔梗葉片之蒸散速率主要受VPD影響。當CO2濃度升至1000 μL·L-1後,葉片氣孔關閉,故蒸散速率降至1.84 mmol·m-2·s-1。
葉面噴施氯化鈣對於減輕洋桔梗葉片頂燒之效果於日夜溫31/23℃、平均77% RH (0.82 kPa VPD),株高處光度介於221 μmol·m-2·s-1PPF之環境中進行。結果顯示每周噴施二次25 mM氯化鈣溶液可減輕頂燒發生率,而每天噴施25 mM,以及每天噴施與每周噴施二次50或100 mM氯化鈣溶液等處理可完全避免葉片頂燒發生,但於100 mM氯化鈣處理中觀察到葉面出現大面積之白化。


Abstract
Leaf tipburn of Eustoma grandiflorum (Raf.) Shinn. is a calcium-deficient disorder. The published reports of environmental factors on incidence of tipburn are often inconsistent. Low transpiration rate and unbalanced Ca distribution are reported as the main causes of tipburn on unfolding leaves, while differentiating flower competes with the young leaves for Ca also induce tipburn. Eustoma ‘King of Orchid’ was treated with various irradiance, temperature, and relative humidity (RH) conditions to have a better understanding of leaf tipburn. We measured stomatal density, vein density of unfolding leaves, and developmental stages of shoot tips, to elucidate the main cause of leaf tipburn. Leaf gas exchange under various irradiance, temperature, leaf to air vapor pressure deficit (VPD), and CO2 concentration conditions was measured to elaborate the tipburn incidence and severity. Effects of foliar spray of calcium chloride on tipburn occurrence were also investigated.
Eustoma ‘King of Orchid’ plants with five fully expanded leaf pairs were placed in a growth room at 36/23℃. Twelve treatments were conducted as follows: moderate humidity condition (MRH; 76% RH, 206 μmol·m-2·s-1 PPF) for 1, 3, 5, 7, 9 days then moved to low humidity condition (LRH; 53% RH, 356 μmol·m-2·s-1 photosynthetic photon flux, PPF), and LRH conditions for 1, 3, 5, 7, 9 days then moved to MRH, and continuous MRH or LRH treatments. Plants under continuous MRH exhibited tipburn occurrence, while those under LRH did not. Plants expressed tipburn symptoms after 5 days under MRH conditions. In contrast, plants did not express any tipburn under LRH conditions until they were placed to MRH conditions.
Plants at 4th, 6th, and 8th leaf pairs stages were placed under 76% RH (0.99 kPa VPD) and received 206 μmol·m-2·s-1 PPF. Results showed that plants with four or six leaf pairs onset tipburn 18 to 6.5 days after treatment, while plants with eight fully expanded leaf pairs showed tipburn symptoms 5 days after treatment.
Vegetative plants with five fully expanded leaf pairs were placed in growth rooms at 36/23℃ or 25/18℃, and each with 74% RH (0.73 - 1.11 kPa VPD) and 90% RH (0.23 - 0.37 kPa VPD) treatments under 167 to 422 μmol·m-2·s-1 PPF. Results showed that leaf tipburn occurred only in plants at sepal and petal primordia formation under 90% RH conditions, and symptoms appeared 8 days earlier under 36/23℃ than 25/18℃. Plants had a higher incidence and whole-plant severity level were observed at 36/23℃ than at 25/18℃. Consistently lower transpiration and reduced leaf vein density was measured in the third young leaf pairs in plants under 90% RH that may limit the uptake and transport of calcium to the leaf tips.
Vegetative plants with five fully expanded leaf pairs were grown under 28 - 35℃/23℃, and 167 to 422 μmol·m-2·s-1 PPF conditions with six treatments. When humidity was elevated from 71% RH (0.32 kPa VPD) to 91% RH (1.19 kPa VPD), tipburn incidence increased from 50% to 100%. Plants with 91% RH showed the earliest and the most severe tipburn symptoms. It took 8 days for plants with 91% RH and 14 days for those with 71% RH from onset to peak of tipburn incidence.
Characteristics of gas exchange were measured under controlled environments. At 25℃, the dark respiration of mature leaves was 2.6 μmol·m-2·s-1, light compensation point was 18.2 μmol·m-2·s-1 PPF, and quantum yield was calculated as 0.04 μmol CO2/μmol PPF. Maximum net photosynthesis rate (Pn) was 15 to 18.5 μmol·m-2·s-1 at 800 μmol·m-2·s-1 PPF, leaf temperature (TL) between 24 and 28℃, and VPD below 1.08 kPa. CO2 saturation point was estimated as 686 μL·L-1, with maximum Pn was recorded as 22.5 μmol·m-2·s-1. At 1.07 ± 0.08 kPa VPD with irradiance increasing from 0 to 1000 μmol·m-2·s-1 PPF, transpiration rate (E) remained constant at 2.18 to 3.28 mmol·m-2·s-1, indicating that E was not affected by different irradiances when VPD was constant. At 1.2 ± 0.1 kPa VPD, E decreased from 3.09 to 2.06 mmol·m-2·s-1 with increasing TL from 16℃ to 30℃.However, E increased linearly from 1.60 to 5.25 mmol·m-2·s-1 with increasing TL and VPD from 0.51 kPa to 4.06 kPa, indicating that VPD might play a major role in Eustoma transpiration. Exposure to CO2 concentration up to 1000 μL·L-1 reduced stomatal conductance and thus decreased transpiration to 1.84 mmol·m-2·s-1.
Effects of calcium chloride on mitigation of tipburn was studied in plants under 31/23℃ with 77% RH (0.82 kPa VPD) and received 221 μmol·m-2·s-1 PPF. Results showed that spraying 25 mM calcium chloride twice per week reduced the incidence of tipburn, while spraying 25 mM daily, and spraying 50 mM and 100mM daily or twice a week calcium chloride could fully prevent tipburn occurrence. However, leaf bleaching was observed in 100 mM treatments.


目錄
摘要 i
Abstract iii
目錄 vi
表目錄 viii
圖目錄 ix
前言 (Introduction) 1
前人研究 (Literature Review) 3
一、洋桔梗原生地與生長習性 3
二、洋桔梗頂燒症狀與發生條件 3
三、葉片缺鈣症狀與發展 4
(一) 葉片頂燒類型 4
(二) 葉片缺鈣症狀之發展 6
(三) 頂燒葉片與健康葉片解剖構造比較 7
四、葉片缺鈣症狀發生之時間與原因 8
五、光度、溫度與大氣相對溼度對園藝作物葉片頂燒之影響 9
(一) 光度對園藝作物葉片頂燒之影響 9
(二) 氣溫對園藝作物葉片頂燒之影響 10
(三) 相對濕度對園藝作物葉片頂燒之影響 11
六、光度、溫度與大氣溼度對葉片形態之影響 13
(一) 光度 13
(二) 溫度 14
(三) 濕度 14
七、光度、溫度、葉片與大氣之蒸氣壓差對葉片氣體交換速率之影響 15
(一) 光度 16
(二) 溫度 16
(三) 葉片與大氣之蒸氣壓差 19
材料與方法 (Materials and Methods) 23
試驗一、在36/23℃以相對濕度53%與76%處理天數對洋桔梗頂燒之影響 23
試驗二、洋桔梗在36/23℃以相對濕度76%處理之頂燒發生時期 24
試驗三、在36/23℃以相對濕度74%與91%處理對洋桔梗頂燒發生之影響 25
試驗四、在23/18℃以相對濕度74%與91%處理對洋桔梗頂燒發生之影響 27
試驗五、大氣濕度對洋桔梗葉片頂燒之影響 28
試驗六、光度、葉溫、蒸氣壓差與二氧化碳濃度對洋桔梗氣體交換速率之影響 30
試驗七、於31/23℃、相對濕度77%下葉面噴施氯化鈣對洋桔梗葉片頂燒之影響 31
結果 (Results) 33
試驗一、在36/23℃以相對濕度53%與76%處理天數對洋桔梗頂燒之影響 33
試驗二、洋桔梗在36/23℃以相對濕度76%處理之頂燒發生時期 34
試驗三、在36/23℃以相對濕度74%與91%處理對洋桔梗頂燒發生之影響 35
試驗四、在23/18℃以相對濕度74%與91%處理對洋桔梗頂燒發生之影響 36
試驗五、大氣濕度對洋桔梗葉片頂燒之影響 37
試驗六、光度、葉溫、蒸氣壓差與二氧化碳濃度對洋桔梗氣體交換速率之影響 40
(一) 光度 40
(二) 葉溫 41
(三) 蒸氣壓差 41
(四) 二氧化碳 42
試驗七、於31/23℃、77% RH下葉面噴施氯化鈣對洋桔梗葉片頂燒之影響 42
討論 (Discussion) 81
參考文獻 (References) 91



參考文獻 (References)
八代嘉昭. 1994. トルコギキョウをつくりこなす. 農文協. 東京.
八代嘉昭. 2000. トルコギキョウ Q&A 葉の先端が枯れるのはなぜ. 現代農業79:254-257.
大川清. 1993. 花専科育种と栽培. トルコギキョウ誠文堂新光社. 東京.
大川清. 1986. トルコギキョウのロゼット化及びロゼット打破に及ぼす温度と日長の影響について. 園學要旨昭61秋: 368-369.
山口隆、今村仁、姬野正己. 1990. トルコギキョウの光合成特性. 野菜茶試花研究年報 3:41-42.
小笠原宣好、原田悠平、鈴木洋. 2007. トルコギキョウの葉先枯れ発生と湿度との関係. 園芸学研究 別冊6:344.
今村仁、山口隆、中澤和夫、姬野正己. 1989. 切り花生産における日射エネルギーの効率的利用技術に関する研究(第4報).トルコギキョウの光合成特性. 園学雑 58別2:458-459.
石鬆敏樹、藤原博文、力徳昌史. 1994. トルコギキョウの葉先枯れ症状の発生に及ぼすカルシウム濃度の影響. 九州農業研究 56:199.
行政院農業委員會農糧署. 2015. 臺閩地區農產品生產量值. 農產品貿易統計查詢系統. <http://www.afa.gov.tw/GrainStatistics_index.aspx?CatID=454>
伊藤純樹. 2005. トルコギキョウの葉先枯れ症発生軽減対策. 農耕と園芸60:44-47.
佐藤武義、西村林太郎、小野惠二. 2001. トルコギキョウの秋期における光合成特性. 東北農業研究 54:231-232.
門脇伸幸、本図竹司、駒形智幸. 2008. 吸水種子の低温処理を用いたトルコギキョウ10-12月出荷作型におけるロゼット化しにくい品種の選定. 茨城県 農業総合センター園芸研究所研究報告 16:25-31.
周慶安、李哖. 2008. 溫度對非洲鳳仙花生育及光合作用的影響. 臺灣園藝 54: 139-150.
高木和彦、國見吉広、岡田俊美、林純二. 1996. 8-9月どりトルコギキョウの反射フィルムマルチと遮光処理の組合せによる切り花の高品質化. 徳島県立農業試験場試験研究報告 33:1-6.
孫文章、王瑞章、陳俊仁、胡文若. 2005. 外銷洋桔梗栽培技術. 臺南區農業改良場技術專刊 130:1-5.
陳彥樺、蔡宛育. 2012. 洋桔梗. 臺中區農業改良場特刊 112:110-118.
陳慈華. 2013. 溫度與光積值對洋桔梗生長與開花之影響模式. 國立臺灣大學園藝學系碩士論文.
須藤憲一. 1998. トルコギキョウの葉枯れ発生と葉温との関連. 園学雑 67:376.
遠山柾雄、竹內芳親、黒柳直彥、杉本勝男. 1985. 温湿度、照度とラッキョウの光合成、蒸散速度及び水利用効率との関係. 園芸学会雑誌 53:444-452.
蔡宛育. 2010. 洋桔梗產銷現況. 臺中區農業改良場特刊 105:203-205.
蔡宜峯、陳俊位、賴文龍. 2008. 有機肥料及苦土石灰應用在洋桔梗栽培之效應. 臺中區農業改良場研究彙報 98:9-20.
Adams, P. and L.C. Ho. 1993. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 154:127-132.
Addington, R.N., R.J. Mitchell, R. Oren, and L.A. Donovan. 2004. Stomatal sensitivity to vapour pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol. 24:561-569.
Alexander, J.D., J. R. Donnelly, and J.B. Shane. 1995. Photosynthetic and transpirational responses of red spruce understory trees to light and temperature. Tree Physiol. 15:393-398.
Aliniaeifard, S., P. Malcolm Matamoros, and U.V. Meeteren. 2014. Stomatal malfunctioning under low VPD conditions: Induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiol. Plant. 152: 688-699.
Aloni, B., T. Pashkar, and R. Libel. 1986. The possible involvement of gibberellins and calcium in tipburn of Chinese cabbage: Study of intact plants and detached leaves. J. Plant Growth Regulat. 4:3-11.
Armitage, A.M. 1994. Ornamental bedding plants. CAB International, Wallingford, UK.
Arve, L.E., M.T. Terfa, H.R. Gislerød, J.E. Olsen, and S.Torre. 2013. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant Cell Environ. 36:382-392.
Barta, D.J. and T.W. Tibbitts. 1991. Calcium localization in lettuce leaves with and without tipburn: Comparison of controlled environment and field-grown plants. J. Amer. Soc. Hort. Sci. 116:870-875.
Barta, D.J. and T.W. Tibbitts. 2000. Calcium localization and tipburn development in lettuce leaves during early enlargement. J. Amer. Soc. Hort. Sci. 125:294-298.
Bosabalidis, A.M. and G. Kofidis. 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 163:375-379.
Brodribb, T.J., N.M. Holbrook, M.A. Zwieniecki, and B. Palma. 2005. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol. 165:839-846.
Brodribb, T.J., T.S. Field, and G.J. Jordan. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144:1890-1898.
Brodribb, T.J. and G.J. Jordan. 2011. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytol. 192:437-448.
Chang, J.C., and T.S. Lin. 2007. Gas exchange in litchi under controlled and field conditions. Scientia Hort. 114:268-274.
Chang, Y.C., K. Grace-Martin, and W.B. Miller. 2004. Efficacy of exogenous calcium applications for reducing upper leaf necrosis in Lilium ‘Star Gazer''. HortScience 39:272-275.
Chang, Y.C. and W.B. Miller. 2003. Growth and calcium partitioning in Lilium ‘Star Gazer’ in relation to leaf calcium deficiency. J. Amer. Soc. Hort. Sci. 128:788-796.
Chang, Y.C. and W.B. Miller. 2004. The relationship between leaf enclosure, transpiration, and upper leaf necrosis on Lilium ‘Star Gazer’. J. Amer. Soc. Hort. Sci. 129:128-133.
Chang, Y.C. and W.B. Miller. 2005. The development of upper leaf necrosis in Lilium ‘Star Gazer’. J. Amer. Soc. Hort. Sci. 130:759-766.
Choi, K.Y. and Y.B. Lee. 2003. Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory. J. Kor. Soc. Hort. Sci. 44:805-808.
Collier, G.F. and T.W. Tibbitts. 1982. Tipburn of lettuce. Hort. Rev. 4:49-65.
Collier, G.F. and T.W. Tibbitts. 1984. Effects of relative humidity and root temperature on calcium concentration and tipburn. J. Amer. Soc. Hort. Sci. 109:128-131.
Cosgrove, D. 1986. Biophysical control of plant cell growth. Annu. Rev. Plant Physiol. 37:377-405.
Day, M.E. 2000. Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens). Tree Physiol. 20:57-63.
de Freitas, S.T., C.Z. Jiang, and E.J. Mitcham. 2012. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins. J. Plant Growth Regulat. 31:221-234.
de Freitas, S.T., M. Padda, Q. Wu, S. Park, and E.J. Mitcham. 2011. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis thaliana. Plant Physiol. 156:844-855.
Dražeta, A., A. Lang, A.J. Hall, R.K. Volz, and P.E. Jameson. 2004. Causes and effects of changes in xylem functionality in apple fruit. Ann. Bot. 93:275-282.
Epstein, E. 1972. Mineral nutrition of plants: Principles and perspectives. Wiley, New York.
Farquhar, G.D. 1978. Feedforward responses of stomata to humidity. Funct. Plant Biol. 5:787-800.
Franks, P.J. and D.J. Beerling. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci. U. S. Amer. 106:10343-10347.
Franks, P. J., and G.D. Farquhar. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143:78-87.
Gates, D.M. 1968. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 19: 211-238.
Gillaspy, G., H. Ben-David, and W. Gruissem. 1993. Fruits: A developmental perspective. Plant Cell 5:1439-1451.
Gilbert, M.E., N.M. Holbrook, M.A. Zwieniecki, W. Sadok, and T.R. Sinclair. 2011. Field confirmation of genetic variation in soybean transpiration response to vapor pressure deficit and photosynthetic compensation. Field Crops Res. 124:85-92.
Gislerød, H.R. and P.V. Nelson. 1989. The interaction of relative air humidity and carbon dioxide enrichment in the growth of Chrysanthemum×morifolium Ramat. Scientia Hort. 38:305-313.
Graebe, J.E. 1987. Gibberellin biosynthesis and control. Annu. Rev. Plant Physiol. 38:419-465.
Halevy, A.H. 1989. Eustoma grandiflorum, p. 322-329. In: S.M. Roh, A.H. Havely, and H.F. Wilkins (eds.). Handbook of flowering. CRC. Press, Boca Raton, Florida.
Heichel, G.H. 1971. Stomatal movements, frequencies, and resistances in two maize varieties differing in photosynthetic capacity. J. Expt. Bot. 22:644-649.
Ho, L.C. and P.J. White. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann. Bot. 95: 571-581.
Hu, J., Q.Y. Yang, S.B. Zhang, and H. Hu. 2014. Effects of temperature on leaf hydraulic architecture of tobacco plants. Planta 240:489-496.
Inoue, N., Y. Taira, T. Emi, Y. Yamane, Y. Kashino, H. Koike, and K. Satoh. 2001. Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol. 42:1140-1148.
Islam, N., G.G. Patil, S. Torre, and H. Gislerød. 2004. Effects of relative air humidity, light, and calcium fertilization on tipburn and calcium content of the leaves of Eustoma grandiflorum (Raf.) Shinn. Europe. J. Hort. Sci. 69:29-36.
Islam, N., G.G. Patil, and H.R. Gislerød. 2005. Effect of photoperiod and light integral on flowering and growth of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 103:441-451.
Kaiser, H. and E. Paoletti. 2014. Dynamic stomatal changes, p.61-82. In: M. Tausz and N. Grulke (ed.). Trees in a changing environment. Springer, The Netherlands.
Karim, M.A., Y. Fracheboud, and P. Stamp. 2000. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. J. Agron. Crop. Sci. 184:217-223.
Kim, T.H., M. Böhmer, H. Hu, N. Nishimura, and J.I. Schroeder. 2010. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61:561-591.
Kim, S.H., J.H. Jeong, and L.L. Nackley. 2013. Photosynthetic and transpiration responses to light, CO2, temperature, and leaf senescence in garlic: analysis and modeling. J. Amer. Soc. Hort. Sci. 1382:149-156.
Kozlowski, T.T., P.J. Kramer and S.G. Pallardy. 1991. The physiological ecology of woody plants. Academic Press, New York.
Ku, S.B. and G.E. Edwards. 1977. Temperature dependence and relation to O2/CO2 solubility ratio. Plant Physiol. 59:986-990.
Lake J.A. and F.I. Woodward. 2008. Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytol. 179: 397-404.
Lawlor, D.W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25:275-294.
Lee, J.G., C.S. Choi, Y.A. Jang, S.W. Jang, S.G. Lee, and Y.C. Um. 2013. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hort. Environ. Biotechnol. 54:303-310.
Leuschner, C. 2002. Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high VPD levels. Flora 197:262-274.
Lu, P., E.K. Chacko , S.L. Bithell, H. Schaper , J. Wiebel , S. Cole, and W.J. Müller. 2012. Photosynthesis and stomatal conductance of five mango cultivars in the seasonally wet-dry tropics of northern Australia. Scientia Hort. 138:108-119.
McAdam, S.A. and T.J. Brodribb. 2015. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiol. 167:833-843.
Meinzer, F.C., T.M. Hinckley , and R. Ceulemans. 1997. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant Cell Environ. 20:1301-1308.
Miranda, V., N.R. Baker, and S.P. Long. 1981. Anatomical variation along the length of the Zea mays leaf in relation to photosynthesis. New Phytol. 88:595-605.
Misaghi, I. and R. Grogan. 1978. Effect of temperature on tipburn development in head lettuce. Phytopathology 68:1738-1743.
Moll, C. and R.L. Jones. 1981. Calcium and gibberellin-induced elongation of lettuce hypocotyl sections. Planta 152:450-456.
Monda, K., J. Negi, A. Iio, K. Kusumi, M. Kojima, M. Hashimoto, H. Sakakibara, and K. Iba. 2011. Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype. Planta 234:555-563.
Monteith, J.L. 1995. A reinterpretation of stomatal responses to humidity. Plant Cell Environ. 18:357-364.
Moon, J.W., J.F. Hancock, A.D. Draper, and J.A. Flore. 1987. Genotypic differences in the effect of temperature on CO2 assimilation and water use efficiency in blueberry. J. Amer. Soc. Hort. Sci. 112:170-173.
Mortensen, L.M. and H.R. Gislerød. 1988. Effect of CO2, air humidity and nutrient solution concentration on growth and transpiration of Begonia × hiemalis Fotsch. Gartenbauwissenschaft. 54:184-189.
Murphy, C.M.R., G.J.Jordan, and T.J. Brodribb. 2012. Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ. 5:1407-1418.
Murphy, M.G.R., G.J. Jordan, and T.J. Brodribb. 2014. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ. 37:124-131.
Natarajan, S. and J.S. Kuehny. 2008. Morphological, physiological, and anatomical characteristics associated with heat preconditioning and heat tolerance in Salvia splendens. J. Amer. Soc. Hort. Sci.133:527-534.
Niu, G., D.S. Rodriguez, and Y.T. Wang. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411.
Ogren, W.L. 1984. Photorespiration: Pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35:415-442.
Oren, R., J.S. Sperry, G.G. Katul, D.E. Pataki, B.E. Ewers, N. Phillips, and K.V.R. Schäfer. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22:1515-1526.
Palencia, P., F. Martinez, E. Ribeiro, M. Pestana, F. Gama, T. Saavedra, A. de Varennes, and P.J. Correia. 2010. Relationship between tipburn and leaf mineral composition in strawberry. Scientia Hort. 126:242-246.
Palzkill, D.A., T.W. Tibbitts, and B.E. Struckmeyer. 1980. High relative humidity promotes tipburn on young cabbage plants. HortScience 15:659-660.
Palzkill, D.A., T.W.Tibbitts, and P.H. Williams. 1976. Enhancement of calcium transport to inner leaves of cabbage for prevention of tipburn. J. Amer. Soc. Hort. Sci. 101:645-648.
Pantin, F., T. Simonneau, and B. Muller. 2012. Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 196:349-366.
Pressman, E. and R. Shaked. 1988. Bolting and flowering of Chinese cabbage as affected by the light intensity and source of supplementary light. Scientia Hort. 34:177-181.
Pressman, E., R. Shaked, and L. Arcan. 1993. The effect of flower-inducing factors on leaf tipburn formation in Chinese cabbage. J. Plant Physiol. 141:210-214.
Sack, L. and K. Frole. 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87:483-491.
Sage, R.F. and D.S. Kubien. 2007. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 30:1086-1106.
Salisbury, F.B. and C.W. Ross. 1992. Plant physiology. 4th ed. Wadsworth Publishing Co., Belmont, CA.
Saure, M.C. 1998. Causes of the tipburn disorder in leaves of vegetables. Scientia Hort. 76:131-147.
Saure, M.C. 2005. Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Scientia Hort. 105:65-89.
Simon, E.W. 1977. The symptoms of calcium deficiency in plants. New Phytol. 80:1-5.
Souza, R.P.D., R.V. Ribeiro, E.C. Machado, R.F.D. Oliveira, and J.A.G.D. Silveira. 2005. Photosynthetic responses of young cashew plants to varying environmental conditions. Pesquisa Agropecuária Brasileira 40:735-744.
Stkveninck, R.K.M. 1965. The significance of calcium on the apparent permeability of cell membranes and the effects of substitution with other divalent ions. Physiol. Plant. 18:54-69.
Struckmeyer, B.E. and J.C. Walker. 1967. The anatomy of internal tipburn of cabbage. Amer. J. Bot. 54:228-231.
Tallman G. 2004. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J. Expt. Bot. 55:1963-1976.
Termohlen, G.P and A.V. Hoeven. 1965. Tipburn symptoms in lettuce. Acta Hort. 4:105-110.
Thiobodeau, P.O. and P.L. Minotti. 1969. Influence of calcium on the development of lettuce tipburn. In Proc Amer Soc Hort Sci. 94:372-376.
Thibodeau, P.O. and P.L. Minotti. 1988. The influence if calcium on the development of lettuce tipburn. J. Amer. Soc. Hort. Sci. 94:372-376.
Tibbitts, T. W. and R.R. Rao. 1968. Light intensity and duration in development of lettuce tipburn. Proc. Amer. Soc. Hort. Sci. 93:454-461.
Tibbitts, T.W., B.E. Struckmeyer, and R.R. Rao. 1965. Tipburn of lettuce as related to release of latex. Proc. Amer. Soc. Hort. Sci. 86:462-467.
Torre, S., T. Fjeld, and H.R. Gislerød. 2001. Effects of air humidity and K/Ca ratio in the nutrient supply on growth and postharvest characteristics of cut roses. Scientia Hort. 90:291-304.
Tsai, Y.H., H. Susilo, and Y.C.A. Chang. 2011. Effects of temperature and defoliation on upper leaf necrosis in Lilium ‘Star Gazer’. Acta Hort. 886:289-298.
van Steveninck, R.F.M. 1965. The significance of calcium on the apparent permeability of cell membranes and the effects of substitution with other divalent ions. Plant Physiol. 18:54-69.
Weiler, E.W., H. Schnabl, and C. Hornberg. 1982. Stress-related levels of abscisic acid in guard cell protoplasts of Vicia faba L. Planta 154:24-28.
Willmer, C. and M. Fricker. 1996. Stomata. 2nd ed. Chapman and Hall, 2-6 Boundary Row, London SE1 8HN, UK.
White, P.J and M.R. Broadley. 2003. Calcium in plants. Ann. Bot. 92:487-511.
Wong, S.C., I.R. Cowan, and G.D. Farquhar. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282:424-426.
Wu, B.J., W.S. Chow, Y.J. Liu, L. Shi, and C.D. Jiang. 2014. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb. Plant Sci. 229: 23-31.
Yanagi, A.A., R.M. Bullock, and J. Cho. 1983. Factors involved in the development of tipburn in crisphead lettuce in Hawaii. J. Amer. Soc. Hort. Sci. 108:234-237.
Yang, X., T.H. Short, R.D. Fox, and W.L. Bauerle. 1990. Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agr. For. Meteorol. 51:197-209.
Zou, D.S. and G. Kahnt. 1988. Effect of air humidity on photosynthesis and transpiration of soybean leaves. J. Agron. Crop Sci. 161:190-194.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top