跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林崇仰
研究生(外文):Lin, Chong-Yang
論文名稱:單晶片微機電諧振結構完成之環境溫度感測器設計
論文名稱(外文):Monolithic MEMS Resonator-Based Environmental Temperature Sensor Design
指導教授:溫瓌岸
指導教授(外文):Wen, Kuei-Ann
口試委員:鄭裕庭;盧向成
口試委員(外文):Cheng, Yu-Ting; Cheng, Yu-Ting
口試日期:2016-09-01
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:76
中文關鍵詞:環境溫度感測器諧振器互補式金屬氧化物半導體微機電系統鎖相迴路
外文關鍵詞:Environmental temperature sensorResonatorCMOSMEMSPLL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出可於標準CMOS 0.18μm 1P6M電路製程下,完成用於環境溫度感測之電容式微機電諧振器。在這個製程下,可以將驅動和讀出電路整合微機電諧振器於單晶片上,而不需要任何晶圓代工廠外的後製程步驟。本論文提出的諧振器之共振頻率被設計成與環境溫度變化呈線性關係,由鎖相迴路提供穩定的時脈來驅動諧振器,也利用鎖相迴路追蹤頻率、鎖定相位的特性,判別出具有溫度資訊的頻率飄移。本論文也提出了具高增益的振幅放大電路的設計,將諧振器輸出的小電流轉為方波電壓訊號,以利鎖相迴路中的相位頻率偵測器能夠準確判讀。
本論文提出的諧振器之量測結果如下,當壓力為760torr時,共振頻率為38.66kHz,有最大位移為648nm,品質因素為183;梳狀電容的覆蓋面積高達407.6μm2以上,代表初始電容值有高於模擬結果的92個百分比。環境溫度計的共同模擬結果如下,在-40~120°C的範圍,靈敏度為-5.7Hz/°C (-143ppm/°C)或-0.228V/°C,解析度為0.67°C。鎖相迴路電路功耗為17.23μW,而整體讀出電路的功耗為190.36μW。

A Micro Electro Mechanical Systems (MEMS) resonator that can be manufactured and monolithically integrated in the ASIC-compatible 0.18μm 1-poly-6-metal (1P6M) standard complementary metal-oxide-semiconductor (CMOS) process is proposed for measuring environmental temperature. It could be monolithically integrated with CMOS driving and readout circuitry without the need of any post-processing after fabrication from the foundry. The resonant frequency shifts designed proportionally to temperature variation. The phase locked loop (PLL) circuitry provides a stable clock to drive the resonator, and it can track the resonant frequency shifts due to the environmental temperature changes. A high-gain amplitude enhancement circuit is presented to transfer the small current from the resonator output to square wave voltage for the phase frequency detector of PLL proper functioning.
The measurement results of the proposed resonator have been demonstrated that the maximum displacement was 648nm when the frequency was 38.66kHz under pressure being 760torr. The calculated Q-factor was 183, and the overlap area of comb fingers is larger than 407.6μm2, which represents more than 92% initial capacitance. The co-simulation result of the proposed resonator-based environmental temperature sensor has been demonstrated with a sensitivity -5.7Hz/°C (-143ppm/°C) or -0.228mV/°C and resolution 0.67°C in a temperature range from -40°C to 120°C. The power consumption of the PLL is 17.23μW and overall readout circuit is only 190.36μW.

摘要 i
ABSRACT ii
誌謝 iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 2
Chapter 2 MEMS Resonator Design and Simulation 4
2.1 CMOS-MEMS Fabrication 4
2.1.1 CMOS-MEMS Process 4
2.1.2 CMOS-MEMS Layout Rules 6
2.2 MEMS Resonator-Based Temperature Sensor Design 9
2.2.1 General Mass-Spring-Damper Model and Frequency Response 9
2.2.2 Electrostatic Force Actuation Mechanism 13
2.2.3 The Structure Design of MEMS Resonators 16
2.2.4 Electrostatic Spring Softening Effect 20
2.2.5 Squeeze and Slide Film Damping 22
2.3 MEMS Resonator-Based Temperature Sensor Simulation 22
2.3.1 Model Analysis 22
2.3.2 Coupled Electromechanical Analysis 24
2.3.3 Damping Analysis 25
2.3.4 Analysis of Resonant Frequency Shifts with Different Temperatures 27
Chapter 3 Circuit Design and Simulation 28
3.1 System Architecture 28
3.2 The Background of Phase Locked Loop 29
3.2.1 Basic PLL 29
3.2.2 Charge Pump PLL 31
3.2.3 Third Order PLL 32
3.3 The proposed PLL 35
3.3.1 Phase Frequency Detector 37
3.3.2 Charge Pump and Low Pass Filter 39
3.3.3 Voltage Controlled Oscillator 42
3.3.4 Frequency Divider 44
3.4 Amplitude Enhancement Circuit 46
3.4.1 Trans-impedance Amplifier 46
3.4.2 Second Stage Amplifier 48
3.4.3 Buffer Design and co-simulation of Amplitude Enhancement Circuit 49
3.5 Co-simulation of PLL and Amplitude Enhancement Circuit 52
Chapter 4 Sensor and Circuit Co-simulation 54
4.1 The Design Flow of the Environmental Temperature Sensor 54
4.2 The Resonator Model for Sensor and Circuit Co-simulation 55
4.3 The Co-simulation of the Temperature Sensor 57
4.4 Comparison 61
Chapter 5 Measurement Results 62
5.1 The Measurement Environment 62
5.2 The Measurement Results of U18-104B, September 2015 65
5.2.1 The Measurement Results of the proposed MEMS Resonator 65
5.2.2 The Measurement Results of the Circuit 69
Chapter 6 Conclusions and Future Works 72
6.1 Conclusions 72
6.2 Future Works 73
Bibliography 74

[1] Y. J. Huang, T. H. Tzeng, T. W. Lin, C. W. Huang, P. W. Yen, P. H. Kuo, et al., "A Self-Powered CMOS Reconfigurable Multi-Sensor SoC for Biomedical Applications," IEEE Journal of Solid-State Circuits, vol. 49, pp. 851-866, 2014.
[2] V. A. Hong, J. Stehle, C. H. Ahn, D. B. Heinz, G. Yama, B. Kim, et al., "Capacitive sensor fusion: Co-fabricated X/Y and Z-axis accelerometers, pressure sensor, thermometer," in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015, pp. 295-298.
[3] H. Fatemi, M. J. Modarres-Zadeh, and R. Abdolvand, "Passive wireless temperature sensing with piezoelectric MEMS resonators," in 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2015, pp. 909-912.
[4] Y. L. Lo and Y. T. Chiu, "A High-Accuracy, High-Resolution, and Low-Cost All-Digital Temperature Sensor Using a Voltage Compensation Ring Oscillator," IEEE Sensors Journal, vol. 16, pp. 43-52, 2016.
[5] S. Y. Li, P. Y. Chou, and J. S. Wang, "Design of an all-digital temperature sensor in 28 nm CMOS using temperature-sensitive delay cells and adaptive-1P calibration for error reduction," in 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), 2016, pp. 262-267.
[6] K. R. Cioffi and H. Wan-Thai, "32KHz MEMS-based oscillator for low-power applications," in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005., 2005, pp. 551-558.
[7] D. E. Serrano, R. Tabrizian, and F. Ayazi, "Tunable piezoelectric MEMS resonators for real-time clock," in 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, 2011, pp. 1-4.
[8] R. Mahameed, M. Abdelmoneum, D. Duarte, G. Taylor, S. J. Choi, R. Brain, et al., "Fully monolithic MEMS based thermal sensor in 22 nm CMOS technology for SoC thermal managemet," in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013, pp. 734-737.
[9] Y. Zhu, Y. Zheng, Y. Gao, D. I. Made, C. Sun, M. Je, et al., "An Energy Autonomous 400 MHz Active Wireless SAW Temperature Sensor Powered by Vibration Energy Harvesting," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, pp. 976-985, 2015.
[10] W. WAI-CHI, A. A. AZID, and B. Y. MAJLIS, "Formulation of stiffness constant and effective mass for a folded beam," Archives of Mechanics, vol. 62, pp. 405-418, 2010.
[11] Y. Rao, S. H. Shi, and C. P. Wong, "A simple evaluation methodology of Young's modulus-temperature relationship for the underfill encapsulants," in Electronic Components and Technology Conference, 1999. 1999 Proceedings. 49th, 1999, pp. 784-789.
[12] G.-X. Zhang, "Existence of Stresses and Prevention of Rupture during Glass Fire-Polishing," Master Thesis, Mechanical Engineering, National Chiao Tung Hsinchu, Taiwan, Republic of China, 2005 July.
[13] C. T. C. Nguyen and R. T. Howe, "An integrated CMOS micromechanical resonator high-Q oscillator," IEEE Journal of Solid-State Circuits, vol. 34, pp. 440-455, 1999.
[14] C.-F. Chang, "Monolithic MEMS Resonator Integrated Oscillator Design and Its Applications on Multi-sensors," Master of Science, Electronics Engineering & Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China, 2014.
[15] F. D. Bannon, J. R. Clark, and C. T. C. Nguyen, "High-Q HF microelectromechanical filters," IEEE Journal of Solid-State Circuits, vol. 35, pp. 512-526, 2000.
[16] 劉深淵 and 楊清淵, 鎖相迴路. 臺中: 滄海書局, 2015.
[17] I. A. Young, J. K. Greason, and K. L. Wong, "A PLL clock generator with 5 to 110 MHz of lock range for microprocessors," IEEE Journal of Solid-State Circuits, vol. 27, pp. 1599-1607, 1992.
[18] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[19] A. Gundel and W. N. Carr, "Ultra Low Power CMOS PLL Clock Synthesizer for Wireless Sensor Nodes," in 2007 IEEE International Symposium on Circuits and Systems, 2007, pp. 3059-3062.
[20] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation. New York: Wiley & Sons, 1998.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊