跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.38) 您好!臺灣時間:2025/11/21 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昀叡
研究生(外文):LI,YUN-RUEI
論文名稱:液靜壓軸承之滑閥式壓力反饋節流器研發
論文名稱(外文):Development of Spool-type Pressure Feedback Restrictor for Hydrostatic Bearing
指導教授:任志強任志強引用關係
指導教授(外文):RENN,JYH-CHYANG
口試委員:陳明飛羅斯維
口試委員(外文):CHEN,MING-FEILO,SY-WEI
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:液靜壓軸承壓力反饋式節流器滑閥式液壓節流器
外文關鍵詞:Hydrostatic BearingPressure Feedback RestrictorSpool-TypeHydraulicsRestrictor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
由於目前和未來對於大型、重負載與高精度工具機之要求日益增長,因此,在過去幾年中,液靜壓軸承的發展已經成為一個越來越重要的議題。有鑑於此,本研究將開發一種應用於液靜壓軸承的新型單向滑閥式壓力反饋節流器。
在液靜壓軸承的應用中,最廣泛使用的壓力反饋節流器為薄膜式壓力反饋節流器,其中主要的元件為一片可用於精準控制液壓油流量的彈性金屬薄片。然而,此薄膜式壓力反饋節流器不適合用於極重的負載。因此,本研究將提出另一種使用傳統液壓閥體架構之滑閥式壓力反饋節流器。本文最後證明所研發之滑閥式壓力反饋節流器可以比薄膜式節流器支撐更重的負載並符合預期效果。關於本文提出全新的設計中有兩個重要的特點:第一個特點是液壓油進入節流器時,因採用孔口節流故可有效地避免油溫變化時可能產生的影響。第二特點為藉由兩個裝配於閥體兩側的可調整手輪可以有效擴大應用範圍。最後由實驗結果證明,本文所提出之新型滑閥式壓力反饋節流器搭配液靜壓軸承,成功的使油膜厚度於受到負載時變化極小。

Due to the increasing demands of larger dimension, heavy load and higher precision for current and future machine tools, the development of hydrostatic bearing has become an important issue over the past few years. In this study, therefore, a novel single-acting spool-type pressure feedback restrictor for hydrostatic bearing is developed. Nowadays, the most commonly used pressure feedback restrictor for hydrostatic bearing is membrane type of restrictor, in which a thin and flexible metal sheet serves as the key component control to the hydraulic oil flow precisely. However, the membrane type pressure feedback restrictor is not quite suitable for extremely heavy load. Therefore, an alternative to design the pressure feedback restrictor for hydrostatic bearing using spool type is presented in this study. It is expected and finally proved that the developed spool-type pressure feedback restrictor can support much heavier load than the membrane type of restrictor. There are two significant features regarding the novel design. The first feature is the introduced orifice restrictor which avoids effectively the influence of possible oil temperature variation. The second feature is the design of two adjustable hand wheels that are built into the valve body to widen the application range. Finally, the experimental results prove that the new design of spool-type pressure feedback restrictor with the hydrostatic bearing can successfully make the thickless of oil-film vary a little when it’s loaded.
中文摘要....................................................................i
Abstract..................................................................ii
誌謝.....................................................................iii
目錄......................................................................iv
表目錄....................................................................vii
圖目錄...................................................................viii
符號說明..................................................................xii
第一章 緒論.................................................................1
1.1前言....................................................................1
1.2研究動機.................................................................2
1.3文獻回顧.................................................................4
1.3.1國外對於液靜壓軸承之研究.................................................4
1.3.2國外對於固定式節流器之研究...............................................5
1.3.3國外對於主動式節流器之研究...............................................5
1.3.4國內對於液靜壓技術之研究.................................................7
1.4論文架構.................................................................8
第二章 節流器特性介紹........................................................9
2.1節流器原理..............................................................10
2.2節流器之供油方式.........................................................13
2.3節流器種類..............................................................15
2.3.1固定式節流器..........................................................18
2.3.2主動式節流器..........................................................21
第三章 新型滑閥式壓力反饋節流器之設計與理論...................................26
3.1新型滑閥式反饋節流器之理論分析............................................26
3.1.1閥軸心受力理論分析.....................................................30
3.2新型滑閥式壓力反饋節流器之作動理論分析.....................................31
第四章 實驗設備...........................................................35
4.1液靜壓軸承實驗台架構.....................................................35
4.1.1油溫感應器............................................................37
4.1.2壓力感測器............................................................38
4.1.3流量計................................................................39
4.1.4渦電流感測器..........................................................40
4.2模擬負載之架構..........................................................40
4.2.1手動方向閥............................................................40
4.2.2比例壓力閥............................................................41
4.2.3油壓缸................................................................42
4.2.4荷重感應器............................................................42
4.3供油系統之架構..........................................................43
4.3.1洩壓閥................................................................43
4.3.2油壓泵................................................................44
4.3.3蓄壓器................................................................44
4.3.4散熱器................................................................45
4.4資料擷取卡..............................................................46
4.5 LabVIEW圖控程式軟體....................................................46
第五章 新型滑閥式壓力反饋節流器實驗分析......................................49
5.1靜態量測之實驗分析結果...................................................49
5.1.1改變供油壓力之實驗分析結果..............................................49
5.1.2改變彈簧之實驗分析結果.................................................52
5.2動態量測之實驗分析結果...................................................57
5.2.1改變供油壓力之實驗分析結果..............................................57
5.2.2改變彈簧之實驗分析結果.................................................64
5.3裝設與無裝設滑閥式節流器之性能實驗.........................................73
5.4各彈簧之最適點性能實驗...................................................78
第六章 結論與未來展望......................................................83
6.1結論...................................................................83
6.2未來展望................................................................85
參 考 文 獻................................................................86

[1]Davies P. B., 1969, “A general analysis of multi-recess hydrostatic journal bearings” , Proceedings of Institution of Mechanical Engineering, Part 1, Vol. 184, No. 43, pp. 827-836.
[2]Yakir, E. M., 1973, “Regulators for Open Hydrostatic Slideways”, Machines and Tooling, Vol. 44, No. 8, pp. 28-32.
[3]Aizenshtok, G. I., 1974, “Closed hydrostatic slideways with floating support” , Stanki I instrument, Vol. 45, No. 7, pp. 14-18.
[4]Miessen, Walter, 1976, “Design of Hydrostatic Slideways” , VDI Z, Vol 118, No. 16, pp. 741-746.
[5]Tully, N., 1977, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing” , Journal of Lubrication Transactions of the ASME, Vol. 1, pp. 106-112.
[6]Ghosh. M.K.andMajumdar. B.C., 1982, “Dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings” , J.lubr TechNol Trans ASME, Vol. 104, No. 4, pp. 491-496.
[7]EI-Sherbiny M., Salam F., EI-Hefnawy N., 1984, “Optimum design of hydrostatic journal bearing: I. Maximum load capacity” , Trib. Int. ;17(3):155-161
[8]EI-Sherbiny M., Salam F., EI-Hefnawy N., 1984, “Optimum design of hydrostatic journal bearing: II. Minimum power” , Trib. Int. ;17(3):162-166.
[9]Dumbrava M.A., 1985, “Review of principles and methods applied to the optimum calculation and design of externally-pressurized bearings. Part 1: Low/moderate speed bearings” , Tribology International, Vol. 18, No. 3, pp. 149-156.
[10]Chen N. S. and Ho Y. S., 1997, “Computer-aided design of hydrostatic journal bearings including shaft bending effect” , Tribology International, Vol. 30, No. 4, pp. 221-228.
[11]Sharma, S. C., Jain, S. C. and Bharuka, D. K., 2002,“Influence of Recess Shape on the Performance of a Capillary Compensated Circular Thrust Pad Hydrostatic Bearing”, Tribology International, Vol. 35, pp. 347-365.
[12]Wang, D., 2004, “Hydrostatic Slideway and Its Design Research” , Lubrication Engineering, No. 4, pp. 114-118.
[13]Gao Dianrong and Zheng Dan., 2010, “Theoretical Analysis and Numerical Simulation of Dynamic Characteristics of Hydrostatic Guides for Heavy NC Machine Tool” , Chinese Journal of Mechanical Engineering, Vol. 23, NO. 6, pp. 709-716.
[14]Hongling Ye, Xiaolong Zheng and Pin Wen., 2011, “Dynamic modeling and analysis of the different cavity-type hydrostatic slide turntable system” , IEEE International Conference on Mechatronics and Automation, pp. 1213-1218.
[15]Zhou,K., Xiong, W., Lv, L., and Yang, X., 2011, “Review on key technology of hydrostatic rotary table” , Maunfacturing technology and machine tools, No 4, pp. 22-29.
[16]Raimondi A. A. and Boyd J., 1957, “An analysis of orifice-& capillary-compensated hydrostatic journal bearings", Journal of the American Society of Lubrication Engineering, Vol. 13, No. 1, pp. 28-37.
[17]Stanley, B.M., and Alfred, M.L., 1961, “The Effect of the Method of Compensation on Hydrostatic Bearing Stiffness” , Journal of Basic Engineering, pp. 179-187.
[18]Ling, T. S., 1962, “On the optimization of the stiffness of externally pressurized bearings” , Trans. ASME. J. Basic Eng, pp. 84:119-122.
[19]Rippel H.C., 1963, “Design of Hydrostatic Bearings:Part2-Controlling Flow with Restrictors” , Machine Design, August 15, pp. 122-126.
[20]Rippel H.C., 1963, “Design of Hydrostatic Bearings:Part3-Influence of Restrictors on Performance ” , Machine Design, August 29, pp. 122-126.
[21]O’Donoghue, J. P., 1972, “Parallel orifice and capillary control for hydrostatic journal bearings” , Tribology, pp. 5:81-82.
[22]Stout KJ, Rowe WB., 1974, “Externally pressurized bearings –design for manufacture Part 3: design of liquid externally pressurized bearings for manufacture including tolerancing procedures” , Tribology International, Vol. 7, No. 5, pp. 195-212.
[23]MK. Ghosh, and BC. Majumdar, 1980, “Design of Multirecess Hydrostatic Oil Journal Bearings” , Tribology International, Vol. 13, No. 2, p. 73-78.
[24]S. C. Sharma, S. C. Jain, R. Sinhasan and R. Shalia, 1995, “Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings” , Tribology International, Vol. 28, pp. 31-539.
[25]S. C. Sharma, R. Sinhasan, S. C. Jain, N. Singh and S. K. Singh, 1998, “Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries” , Tribology Transactions, Vol. 41, pp. 375 – 381.
[26]Mohsin, M.E., 1963, “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing” , Third International Conference on Machine Tool Design Research, pp. 129-424.
[27]Mayer, J. E. and Shaw, M. C., 1963, “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors” , ASEM Journal of Basic Engineering, Vol. 85, p. 291.
[28]DeGast, J. G. P., 1966, “A New Type of Controlled Restrictor (M. D. R) for Double Film Hydrostatic Bearings and Its Application to High-precision Machine Tools” , International Journal of Machine Tools Design and Research, pp. 273-298.
[29]W. Backe, 1967, “Untersuchung hydrostatischer Lager mit gesteuerter und geregelter Ölzufuhr” , Rheinisch-Westfälische AachenTechnische Hochschule.
[30]De Gast, J. G. C. , 1969, “Dynamic Behavior of Double Film Hydrostatic Bearing with Variable Flow Restrictor,”ASME, pp. 69-81.
[31]Rowe, W. B. and O’Donoghue, J.P., 1970, “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing” , Proc. I. E. Tribology.
[32]Moris, S. A., 1972, “Passively and Actively Controlled Externally Pressurized Oil-film Bearing” , Transaction of the ASME, Ser. F, Vol. 94,.
[33]Moris, S. A., 1974, “Passively and Actively Controlled Externally Pressurized Oil-film Bearing ” , Transaction of the ASME, pp. 56-63.
[34]Sukholutskii, Y.A., 1975, “Closed-Loop Hydrostatic Slideways with Regulators” , Stanknii Instrument, Vol. 46 , pp. 15-18.
[35]Pande, S. S., Somasundaram S., 1979, “Analysis of a four-pocket hydrostatic journal bearing with a position-sensing variable restrictor” , Wear, pp. 54:331-341.
[36]W. B. Rowe, 1983, “Hydrostatic and hybrid bearing design” , Butterworths pressed.
[37]Osumi T., Mori H., Ikeuchi K., 1985, “Effects of stabilizer on initial response of self controlled externally pressurized bearings” , Trans. JSLE, pp. 20:651-657.
[38]Zaitsev, D. K. and Grudskaya, E. G., 1989, “Dynamic Characteristics of a Bearing with Active Discharge Compensation”.
[39]Yoshimoto S., Anno Y., Amari K., 1990, “Static characteristics of hydrostatic journal bearing with a self controlled restrictor employing floating disk” , Trans. JSLE, pp. 56:3360-3367.
[40]Wang, C. and Cusano, C. ,1991, “Dynamic Characteristics of Externally Pressurized, Double-Pad, Circular Thrust Bearings with Membrane Restrictors” , Transactions of the ASME, Journal of Tribology, Vol. 113.
[41]Sharma, S. C., Sinhasan, R., and Jain, S. C. ,1992, “Performance Characteristics of Multirecess Hydrostatic/Hybrid Flexible Journal Bearing with Membrane Type Variable-Flow Restrictor as Compensating Elements” , Wear, Vol. 152, No. 2, pp. 279-300.
[42]Yoshimoto S., Kikuchi K., 1999, “Step response characteristics of hydrostaticjournal bearings with self-controlled restrictor employing floating disk” , Trans.Int., pp. 121(4):315-320.
[43]Robert Schoenfold, 2001, “Regulator for adjusting the fluid flow in ahydrostatic or aerostatic device” , US Patent number 6276491B1.
[44]N. Singh, S. C. Sharma, S. C. Jain and S. S. Reddy, 2004, “Performance ofmembrane compensated multirecess hydrostatic hybrid flexible journalbearing system considering various recess shapes” , Tribology International, Vol. 37, pp. 11-24.
[45]Kang, Y., Shen,P.-C., Chang,Y.-P.,Lee, H.-H.,and Chiang, C.-P.,2007, “Modifiend Prediction of Restriction Coefficient and Flow Resistance for Membrane-tape Restrictors in Hydrostatic Bearing by Using Regreeion” , Tribology International Vol. 40, pp. 1369-1380.
[46]Kang, Y., Shen, P.C., Chang, Y.-P., Lee, H.-H., 2007, “Modifiend Determination of Fluid Resistance for Membrane-tape Restrictors” , Industrial Lubrication & Tribology, 59(3), pp. 123-131.
[47]Hiroshi Sawano, Yusuke Nakamura, Hayato Yoshioka, Hidenori Shinno, 2015, “High performance hydrostatic bearing using variable inherent restrictor with a thin metal plate” , Precision Engineering, Vol. 41, pp.78-85.
[48]W. Brian Rowe,2012, “Hydrostatic, Aerostatic and Hybrid Bearing Design” , Butterworth-Heinemann 1st Edition.
[49]王東鋒,2003,液體靜壓導軌及其在機床導軌設計中的應用研究,液壓氣動與密封, Vol. 5。
[50]李棋富,2004,閉式靜壓滑軌之特性分析與最佳化,國立中原大學機械工程學系碩士論文。
[51]吳奎漢,2006,閉式靜壓滑軌使用薄膜節流器之動態特性分析,國立中原大學機械工程學系碩士論文。
[52]姜智彬,2006,靜壓滑軌節流器之探討,國立中原大學機械工程學系碩士論文。
[53]金鼎鈞,2008,封閉式圓形靜壓平面支承使用不同形式節流器之工作台動態特性分析,國立中原大學機械工程學系碩士論文。
[54]劉志君,2009,靜壓軸承之單向滑閥節流器特性及參數之量測與鑑別,東南科技大學機電整合研究所碩士論文。
[55]盧佳崴,2010,新型主動式補償液靜壓軸承設計及實驗驗證,國立清華大學動力機械工程學系碩士論文。
[56]林德勛,2011,具薄膜節流器之液靜壓軸承研發與測試,國立彰化師範大學機電工程學系碩士論文。
[57]盧文暉,2013,具薄膜節流器之圓形軸墊性能分析與測試,國立彰化師範大學機電工程學系碩士論文。
[58]謝振盛,2014,油膜厚度控制於工具機之液靜壓迴轉台之研究,國立成功大學機械工程學系博士論文。
[59]陳明飛,2014,精密工具機液靜壓導軌簡介與設計分析,國立彰化師範大學機電工程學系簡報。
[60]呂淮薰,黃勝銘 編,2010,氣液壓學,高立圖書有限公司。
[61]歐陽渭成 編譯,1997,靜壓軸承設計與應用,機械技術出版社。
[62]龐志成 編譯,1981,液體氣體靜壓技術,黑龍江人民出版社。
[63]丁振乾,1986,流體靜壓支撐設計,上海科學技術出版社。
[64]吳家振,2003,先進磨削機械系統開發計畫-油靜壓軸承開發簡報,中山科學研究院。
[65]謝岱凌,1986,LabVIEW 201X虛擬儀控程式設計,上海科學技術出版社。
[66]林清源等人,2007,超精密加工機技術介紹,中華民國自動化科技學會期刊。
[67]黃華志,2014,工具機液體靜壓軸承技術,中興大學工具機系統設計分析課程。
[68]張永鵬,王亞平,胡書銘,沈育霖,康 淵,2011,圓形閉式靜壓平面軸承使用圓桿節流器之工作台動態特性,先進工程學刊 第六卷 第四期,p. 295-304。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊