跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳慧玲
研究生(外文):Chen, Huiling
論文名稱:以濕式化學法製作Cu2ZnSnS4薄膜之研究
論文名稱(外文):Preparation of Cu2ZnSnS4 Thin Filmsby Wet Chemical Method
指導教授:游瑞松黃鵲容
指導教授(外文):Yu, RueisungHuang, Chuehjung
口試委員:游瑞松黃鵲容蔡木村
口試委員(外文):Yu, RueisungHuang, ChuehjungTsai, Mutsun
口試日期:2012-07-06
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:化學濕式法銅鋅錫硫鋅黃錫礦(kesterite)吸收係數
外文關鍵詞:Wet chemicalCZTSKesteriteAbsorption coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1008
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以化學濕式法製備銅鋅錫硫Cu2ZnSnS4 (CZTS)薄膜,於控制氬氣氛下進行退火處理,研究分成兩階段,第一階段為改變三種不同前驅溶液的硫含量,薄膜在250 ℃退火處理1小時後,結果顯示以前驅溶液硫含量S3.0沉積之CZTS薄膜有較佳之光電特性,光學能隙值為1.52 eV,吸收係數大於104 cm-1,具有最低之電阻值為4.68 Ω cm。
第二階段研究增加退火溫度為300 ℃與350 ℃對薄膜結構與光電特性影響,最後並與退火溫度250 ℃之薄膜作結構與光電特性相互比較,結果發現隨退火溫度由250 ℃增加至350 ℃,所有薄膜均為鋅黃錫礦(Kesterite)結構,並無二次相的生成,研究顯示隨著退火溫度的增加所造成的熱壓縮應力會改變薄膜表面形貌,由具有微裂縫形貌改變至表面凸起物(Hillock)的形成,薄膜光學直接能隙值由1.52 eV增加到1.68 eV,電阻值由4.68 Ω cm增加至124.49 Ω cm,所有的CZTS薄膜吸收係數均大於104 cm-1。
Cu2ZnSnS4 (CZTS) films were synthesized by wet chemical processes and then annealed under controlled argon atmosphere. This study was conducted in two stages. In the first stage, the precursor solutions were prepared in three levels of sulfur content. These films were deposited from the precursor solutions and annealed at 250 ℃ for 1 hour. The results showed that the CZTS film deposited from the sulfur content S3.0 had the better optoelectronic properties as compared to its counterparts. The optical energy gap value was 1.52 eV, and the absorption coefficient was greater than 104 cm-1, while it had the smallest resistivity of 4.68 Ω cm.
In the second stage, the annealing temperature was set at 300 and 350 ℃ to identify how it would affect these film’s structures and optoelectronic properties. The film annealed at 250 ℃ was introduced for the purpose of comparison. It was found that when the annealing temperature increased from 250 to 350 ℃, all the films were of the Kesterite structure, and no secondary phase was observed. As demonstrated, the thermal compressive stress generated as the annealing temperature increased could change the appearances of the films. More particularly, the crackled surface was changed to one with hillocks. The films optical direct energy gap values were increased from 1.52 to 1.68 eV and the resistivities were increased from 4.68 to 124.49 Ω cm. Each of the CZTS films had absorption coefficients greater than 104 cm-1.
摘要IV
AbstractV
目錄VI
圖目錄IX
表目錄XII
第一章緒論1
1.1 前言1
1.2 研究動機與目的3
1.3 銅鋅錫硫Cu2ZnSnS4 (CZTS)薄膜5
第二章文獻回顧與原理7
2.1 太陽能電池的起源7
2.2 太陽能電池的原理8
2.3 太陽能電池的材料10
2.4 薄膜太陽能電池12
2.5 Cu2ZnSnS4 (CZTS)薄膜製備技術-溶膠凝膠法14
2.6 Cu2ZnSnS4 (CZTS)薄膜相關文獻研究17
第三章實驗方法與步驟20
3.1 Cu2ZnSnS4 (CZTS)薄膜製備步驟20
3.1.1 Cu2ZnSnS4 (CZTS)薄膜製備方法20
3.1.2 藥品簡介與實驗條件24
3.1.3 石英基板清洗流程27
3.2 儀器設備簡介29
3.2.1 電磁加熱攪拌器(Hot platemagnetic stirrer)29
3.2.2 旋轉塗佈機(Spin coater)30
3.2.3 烘箱(Dry oven)31
3.2.4 高溫爐(Tube furnace)32
3.2.5 超音波洗淨機(Ultrasonic Cleaner)33
3.3 薄膜結構與光電特性分析34
3.3.1 X光繞射(X-ray Diffraction,XRD)分析35
3.3.2 場發射式掃瞄式電子顯微鏡 (FE-SEM)微結構分析37
3.3.3 歐傑電子能譜儀(AES)化學成份分析38
3.3.4 紫外/可見/近紅外光光譜儀(UV/VIS/NIR)分析39
3.3.5 霍爾效應量測(Hall effect measurement)40
第四章結果與討論41
4.1 前驅溶液濃度對CZTS薄膜特性之探討42
4.1.1 X光繞射(XRD)薄膜晶體結構分析42
4.1.2 場發射掃瞄式電子顯微鏡(FE-SEM)表面微結構分析44
4.1.3 紫外光/可見光/近紅外光光譜儀(UV/VIS/NIR)分析48
4.1.4 霍爾(Hall)效應量測結果探討53
4.2 退火溫度對CZTS薄膜特性之探討54
4.2.1 歐傑電子能譜儀(AES)化學成分分析54
4.2.2 X光繞射(XRD)薄膜晶體結構分析56
4.2.3 場發射掃瞄式電子顯微鏡(FE-SEM)表面微結構分析58
4.2.4 紫外光/可見光/近紅外光光譜儀(UV/VIS/NIR)分析61
4.2.5 霍爾(Hall)效應量測64
4.3 綜合討論65
第五章結論68
參考文獻70
致謝74
[1] Hahn, H., G. Frank, W. Klinger, A.D. Meyer, and G. Storger, Z. Anorg. Allg. Chem., 271 (1953) 153.
[2] I. Repins1, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovolt: Res. Appl., (2008).
[3] 林明獻 (2008)。太陽電池技術入門。台北縣:全華圖書。
[4] D. R. Lide, Handbook of Chemistry and Physics, 14 (1991) 7.
[5] K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., 27 (1988) 2094.
[6] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, Sol. Energy Mater. Sol. Cells, 49 (1997) 407.
[7] J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, Sol. Energy Mater. Sol. Cells, 75 (2003) 155.
[8] K. Tanaka, N. Moritake, M. Oonuki, and H. Uchiki, Jpn. J. Appl. Phys., 47 (2008) 598.
[9] G. P. Bernardini, D. Borrini, A. Caneschi, F. D. Benedetto, D.Gatteschi, S. Ristori, and M. Romanelli, Phys. Chem. Miner., 27 (2000) 453.
[10] F. D. Benedetto, G. P. Bernardini, D. Borrini, W. Lottermoser, G. Tippelt, and G.Amthauer, Phys. Chem. Miner., 31 (2005) 683.
[11] Y.B. K. Kumar, G. S. Babu, P. U. Bhaskar, and V. S. Raja, Sol. Energy Mater. Sol. Cells, 93 (2009) 1230.
[12] 馮垛生主編 (2009)。太陽能發電原理與應用。台北:五南圖書出版公司。
[13] 楊賜麟譯 (2005)。半導體物理與元件。台中:滄海書局‧鼎隆圖書股份有限公司。
[14] 黃惠良、曾百亨等著 (2008)。太陽電池。台北:五南圖書出版公司。
[15] C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, (1990) 834.
[16] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, Tech. Dig. Int. PVSEC-9 Miyazaki, (1996) 745.
[17] H. Katagiri, M. Nishimura, T. Onozawa, S. Maruyama, M. Fujita, T. Sega, and T. Watanabe, Proc. Power Conversion Conf. Nagaoka, (1997) 1003.
[18] H. Katagiri, K. Saito, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, Sol. Energy Mater. Sol. Cells, 65 (2001) 141.
[19] H. Katagiri, N. Ihigaki, T. Ishida, and K. Saito, Jpn. J. Appl. Phys., 40 (2001) 500.
[20] H. Katagiri,Thin Solid Films,480–481 (2005) 426.
[21] J. Seol, S. Lee, J. Lee, H. Nam, and K. Kim, Sol. Energy Mater. Sol. Cells, 75 (2003) 155.
[22] Th.M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, and H.W. Schock,Proc. 14th European Confe. Photovoltaic Science and Engineering Bedford, (1997) 1242.
[23] T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, and H. Ogawa,Phys. Status Solidi C, 3 (2006) 2844.
[24] K.Tanaka, N. Moritake, and Hi. Uchiki, Sol. Energy Mater. Sol. Cells, 91 (2007) 1199.
[25] M. Y. Yeh, C. C. Lee, and D. S. Wuu, J Sol-Gel Sci Technol., 52 (2009) 65.
[26] M. Y. Yeh, C. C. Lee, and D. S. Wuu, Adv. Mater. Res., 79-82 (2009) 835.
[27] K. Maeda, K. Tanaka, Y. Fukui, and H. Uchiki, Sol. Energy Mater. Sol. Cells, 95 (2011) 2855.
[28] 林麗娟 (1994)。X光繞射原理及應用。工業材料雜誌,86,100-109。
[29] 林智仁 (2002)。場發射式掃瞄式電子顯微鏡簡介。工業材料雜誌,181,94-99。
[30] 國科會精密儀器中心 (2005)。奈米檢測技術。國家實驗研究儀器社。
[31] 盧錫全。紫外線/可見光分光光譜儀檢測使用及使用方法。國立台北科技大學奈米光電磁材料技術研發中心。
[32] B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed, (1981).
[33] R. S. Yu, C. J. Lu, D. C. Tasi, S. C. Liang, and F. S. Shieu, J. Electrochem. Soc., 154 (2007) 838.
[34] Y. B. Kumar, P. U. Bhaskar, G. S. Babu, and V. S. Raja, Phys. Status Solidi A, 207 (2010) 149.
[35] R. S. Yu, D. C. Tasi, R. S. Chu, C. J. Huang, and F. S. Shieu, J. Electrochem. Soc., 154 (2007) 1014.
[36] G. M. Ilari, C. M. Fella, C. Ziegler, A.R. Uhl, Y. E. Romanyuk, and A. N. Tiwari, Sol. Energy Mater. Sol. Cells, 104 (2012) 125.
[37] S. Agilan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, Physica B, 365 (2005) 93.
[38] D. S. Kim and S. Y. Choi, Phys. Status Solidi A, 15 (2005) 167.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top