|
[1]A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol. 6, pp. 183-191, 2007. [2]J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology, vol. 3, pp. 206-209, 2008. [3]Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, Wafer-scale graphene integrated circuit, Science, vol. 332, pp. 1294-1297, 2011. [4]X. Wang, L. J. Zhi, and K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Letters, vol. 8, pp. 323-327, 2008. [5]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat Mater, vol. 6, pp. 652-5, 2007. [6]S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes, Scientific Reports, vol. 3, p. 1868, 2013. [7]N. Mohanty and V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents, Nano Letters, vol. 8, pp. 4469-4476, 2008. [8]V. Barone, O. Hod, and G. E. Scuseria, Electronic Structure and Stability of Semiconducting Graphene Nanoribbons, Nano Letters, vol. 6, pp. 2748-2754, 2006. [9]H. Yan, Y. Tang, W. Long, and Y. Li, Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets, Journal of Materials Science, vol. 49, pp. 5256-5264, 2014. [10]D. Zhang, L. Gan, Y. Cao, Q. Wang, L. Qi, and X. Guo, Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor, Advanced Materials, vol. 24, pp. 2715-2720, 2012. [11]Y. Chen, Y. Long, Y. Liu, L. Shen, Y. Zhang, Q. Deng, Z. Zheng, W. Yu, and S. Ruan, Optimizing the light absorption of graphene-based organic solar cells by tailoring the weak microcavity with dielectric/graphene/dielectric multilayer, Applied Physics Letters, vol. 103, p. 063301, 2013. [12]O. Vagas, A. l. Caballero, J. n. Morales, Giuseppe Antonio Elia, B. Scrosatiwb, and J. Hassoun, Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell, Physical Chemistry Chemical Physics, vol. 15, p. 20444, 2013. [13]X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, and Y. Chen, A High-Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications, Advanced Functional Materials, vol. 23, pp. 3353-3360, 2013. [14]A. S. Wajid, S. Das, F. Irin, H. S. T. Ahmed, J. L. Shelburne, D. Parviz, R. J. Fullerton, A. F. Jankowski, R. C. Hedden, and M. J. Green, Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon, vol. 50, pp. 526-534, 2012. [15]Q. H. Liang, X. X. Yao, W. W. Liu, Y. Liu, and C. P. Wong, A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials, ACS Nano, vol. 5, pp. 2392-2401, 2011. [16]H. M. Wang, Z. Zheng, Y. Y. Wang, J. J. Qiu, Z. B. Guo, Z. X. Shen, and T. Yu, Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties, Applied Physics Letters, vol. 96, p. 023106, 2010. [17]I. Yasushi, Application of Graphene to High-Speed Transistors: Expectations and Challenges, Quarterly Review, vol. 37, 2010. [18]J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature, vol. 466, pp. 470-473, 2010. [19]M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen, and R. Fasel, Porous graphenes: two-dimensional polymer synthesis with atomic precision, Chemical Communications, pp. 6919-21, 2009. [20]P. Kuhn, A. Forget, D. S. Su, T. Arne, and A. Markus, From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks, Journal of the American Chemical Society, vol. 130, 2008. [21]J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Graphene nanomesh, Nature Nanotechnology, vol. 5, pp. 190-194, 2010. [22]X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography, Nano Lett, vol. 10, pp. 2454-2460, 2010. [23]Z. Zeng, X. Huang, Z. Yin, H. Li, Y. Chen, H. Li, Q. Zhang, J. Ma, F. Boey, and H. Zhang, Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template, Advanced Materials, vol. 24, pp. 4138-42, 2012. [24]M. D. Fischbein and M. Drnd, Electron beam nanosculpting of suspended graphene sheets, Applied Physics Letters, vol. 93, p. 113107, 2008. [25]D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, UV/O3generated graphene nanomesh: formation mechanism, properties, and FET studies, The Journal of Physical Chemistry C, vol. 118, pp. 725-731, 2014. [26]O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts, ACS Nano, vol. 4, pp. 4174-4180, 2010. [27]I. Jung, H. Young Jang, and S. Park, Direct growth of graphene nanomesh using a Au nano-network as a metal catalyst via chemical vapor deposition, Applied Physics Letters, vol. 103, p. 023105, 2013. [28]L. Baraton, Z. B. He, C. S. Lee, C. S. Cojocaru, M. Châtelet, J. L. Maurice, Y. H. Lee, and D. Pribat, On the mechanisms of precipitation of graphene on nickel thin films, EPL (Europhysics Letters), vol. 96, p. 46003, 2011. [29]J. H. Wang and S. Kaskel, KOH activation of carbon-based materials for energy storage, Journal of Materials Chemistry, vol. 22, p. 23710, 2012. [30]Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science, vol. 332, pp. 1537-1541, 2011. [31]L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, and Y. Chen, Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors, Scientific Reports, vol. 3, p. 1408, 2013. [32]X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications, ACS Nano, vol. 5 pp. 8739-8749, 2011. [33]X. Wang, L. Jiao, K. Sheng, C. Li, L. Dai, and G. Shi, Solution-processable graphene nanomeshes with controlled pore structures, Scientific Reports, vol. 3, p. 1996, 2013. [34]Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng, and T. Wei, Easy synthesis of porous graphene nanosheets and their use in supercapacitors, Carbon, vol. 50, pp. 1699-1703, 2012. [35]J. Yi, D. H. Lee, W. W. Lee, and W. I. Park, Direct synthesis of graphene meshes and semipermanent electrical doping, The Journal of Physical Chemistry Letters, vol. 4, pp. 2099-2104, 2013. [36]Y. Shen, X. Cao, B. Zhang, D. Wei, J. Ma, W. Liu, C. Han, and Y. Shen, Synthesis of SnO2 nanorods and application to H2 sensor, Journal of Alloys and Compounds, vol. 593, pp. 271-274, 2014. [37]N. Rajesh, J. C. Kannan, T. Krishnakumar, S. G. Leonardi, and G. Neri, Sensing behavior to ethanol of tin oxide nanoparticles prepared by microwave synthesis with different irradiation time, Sensors and Actuators B: Chemical, vol. 194, pp. 96-104, 2014. [38]H.E. Endres, R. Hartinger, S. Drost, W. Hellmich, G. Mtiller, C. B.V. Braunmiihl, A. Krenkow, C. Perego, and G. Sberveglieri, A thin-film SnO2 sensor system for simultaneous detection of CO and NO, with neural signal evaluation, Sensors and Actuators B vol. 35, pp. 353-357, 1996. [39]J. Kukkola, J. Mäklin, N. Halonen, T. Kyllönen, G. Tóth, M. Szabó, A. Shchukarev, J.-P. Mikkola, H. Jantunen, and K. Kordás, Gas sensors based on anodic tungsten oxide, Sensors and Actuators B: Chemical, vol. 153, pp. 293-300, 2011. [40]H. Bai and G. Shi, Gas sensors based on conducting polymers, Sensors, vol. 7, pp. 267-307, 2007. [41]P.G. Su and Y.T. Peng, Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization, Sensors and Actuators B: Chemical, vol. 193, pp. 637-643, 2014. [42]E. L. lobet, Gas sensors using carbon nanomaterials: A review, Sensors and Actuators B: Chemical, vol. 179, pp. 32-45, 2013. [43]B. Zhang, R. Fu, M. Zhang, X. Dong, L. Wang, and C. U. Pittman, Gas sensitive vapor grown carbon nanofiber/polystyrene sensors, Materials Research Bulletin, vol. 41, pp. 553-562, 2006. [44]A. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, and J. Jang, Fabrication of ultrafine metal-oxide- decorated carbon nanofibers for DMMP sensor application, ACS Nano, vol. 5, pp. 7992-8001, 2011. [45]J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Da, Nanotube molecular wires as chemical sensors, Science, vol. 287, pp. 622-625, 2000. [46]A. Abdelhalim, A. Abdellah, G. Scarpa, and P. Lugli, Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications, Nanotechnology, vol. 25, p. 055208, 2014. [47]S. Yeo, C. Choi, C. Woong Jang, S. Lee, and Y. Min Jhon, Sensitivity enhancement of carbon nanotube based ammonium ion sensors through surface modification by using oxygen plasma treatment, Applied Physics Letters, vol. 102, p. 073108, 2013. [48]H. H. Choi, J. Lee, K. Y. Dong, B. K. Ju, and W. Lee, Noxious gas detection using carbon nanotubes with Pd nanoparticles, Nanoscale Research Letters, vol. 6, p. 605, 2011. [49]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials, vol. 6, pp. 652-5, 2007. [50]Y. H. Zhang, Y. B. Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang, and Y. Peng, Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology, vol. 20, p. 185504, 2009. [51]Z. L. Bing Huang, Zhirong Liu, Gang Zhou, Shaogang Hao, Jian Wu,Bing-Lin Gu, and Wenhui Duan, Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor, The Journal of Physical Chemistry C, vol. 112, 2008. [52]Y. P. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. C. Johnson, Intrinsic response of graphene vapor sensors, Nano Letters, vol. 9, pp. 1472-1475, 2009. [53]J. Dai, J. Yuan, and P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study, Applied Physics Letters, vol. 95, p. 232105, 2009. [54]T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Adsorbates on graphene: Impurity states and electron scattering, Chemical Physics Letters, vol. 476, pp. 125-134, 2009. [55]A. C. Crowther, A. Ghassaei, N. Jung, and L. E. Brus, Strong charge-transfer doping of 1 to 10 layer graphene by NO2, ACS Nano, vol. 6 pp. 1865-1875, 2012. [56]C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, and S. J. Pearton, Oxygen sensors made by monolayer graphene under room temperature, Applied Physics Letters, vol. 99, p. 243502, 2011. [57]K. Yu, P. Wang, G. Lu, K.-H. Chen, Z. Bo, and J. Chen, Patterning vertically oriented graphene sheets for nanodevice applications, The Journal of Physical Chemistry Letters, vol. 2, pp. 537-542, 2011. [58]M. Gautam and A. H. Jayatissa, Detection of organic vapors by graphene films functionalized with metallic nanoparticles, Journal of Applied Physics, vol. 112, p. 114326, 2012. [59]S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, and A. A. Balandin, Selective gas sensing with a single pristine graphene transistor, Nano Letters, vol. 12, pp. 2294-2298, 2012. [60]M. W. K. Nomani, R. Shishir, M. Qazi, D. Diwan, V. B. Shields, M. G. Spencer, G. S. Tompa, N. M. Sbrockey, and G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC, Sensors and Actuators B: Chemical, vol. 150, pp. 301-307, 2010. [61]C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, The Journal of Physical Chemistry B, vol. 108, pp. 19912-19916, 2004. [62]G. Chen, T. M. Paronyan, and A. R. Harutyunyan, Sub-ppt gas detection with pristine graphene, Applied Physics Letters, vol. 101, p. 053119, 2012. [63]Y. A. Lv, G. L. Zhuang, J. G. Wang, Y. B. Jia, and Q. Xie, Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field, Physical Chemistry Chemical Physics, vol. 13, pp. 12472-12477, 2011. [64]Y.-H. Zhang, L.-F. Han, Y.-H. Xiao, D.-Z. Jia, Z.-H. Guo, and F. Li, Understanding dopant and defect effect on H2S sensing performances of graphene: A first-principles study, Computational Materials Science, vol. 69, pp. 222-228, 2013. [65]Z. M. Ao, J. Yang, S. Li, and Q. Jiang, Enhancement of CO detection in Al doped graphene, Chemical Physics Letters, vol. 461, pp. 276-279, 2008. [66]A. S. Khojin, D. Estrada, K. Y. Lin, M. H. Bae, F. Xiong, E. Pop, and R. I. Masel, Polycrystalline graphene ribbons as chemiresistors, Advanced Materials, vol. 24, pp. 53-57, 2012. [67]T. H. Han, Y. K. Huang, A. T. Tan, V. P. Dravid, and J. Huang, Steam etched porous graphene oxide network for chemical sensing, Journal of the American Chemical Society, vol. 133, pp. 15264-15267, 2011. [68]R. K. Paul, S. Badhulika, N. M. Saucedo, and A. Mulchandani, Graphene nanomesh as highly sensitive chemiresistoe gas sensor, Analytica. Chemistry., vol. 84, pp. 8171-8178, 2012. [69]M. G. Chung, D. H. Kim, H. M. Lee, T. Kim, J. H. Choi, D. k. Seo, J.-B. Yoo, S.-H. Hong, T. J. Kang, and Y. H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene, Sensors and Actuators B: Chemical, vol. 166-167, pp. 172-176, 2012. [70]A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, Highly selective gas sensor arrays based on thermally reduced graphene oxide, Nanoscale, vol. 5, pp. 5426-5434, 2013. [71]B. S. Berry, Diffusion of carbon in nickel, Journal of Applied Physics, vol. 44, pp. 3792-3793, 1973. [72]T. Alizadeh and L. H. Soltani, Graphene/poly(methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing, Journal of Hazardous Materials, vol. 248-249, pp. 401-406, 2013. [73]D. Zhang, J. Tong, and B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly, Sensors and Actuators B: Chemical, vol. 197, pp. 66-72, 2014. [74]F. Liu, X. Chu, Y. Dong, W. Zhang, W. Sun, and L. Shen, Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method, Sensors and Actuators B: Chemical, vol. 188, pp. 469-474, 2013. [75]S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor, Journal of the American Chemical Society, vol. 134, pp. 4905-4917, Mar 14 2012. [76]H. Y. Jeong, D.S. Lee, H. K. Choi, D. H. Lee, J.E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S.Y. Choi, Flexible room-temperature NO gas sensors based on carbon nanotubes/reduced graphene hybrid films, Applied Physics Letters, vol. 96, p. 213105, 2010. [77]W. Yuan, G.Shi, Raman characterization of ABA- and ABC-atacked trilayer graphene, Acs Nano, vol. 5, pp. 8760-8768, 2011. [78]S. Basu and P. Bhattacharyya, Graphene based gas sensors, Journal of Materials Chemisty A, vol. 1, pp. 10078-10091, 2013. [79]Y. Hajati, T. Blom, S. H. Jafri, S. Haldar, S. Bhandary, M. Z. Shoushtari, O. Eriksson, B. Sanyal, and K. Leifer, Improved gas sensing activity in structurally defected bilayer graphene, Nanotechnology, vol. 23, p. 505501, 2012. [80]S. Amini1, J. Garay1, G. Liu, A. A. Balandin, R. Abbaschian, 'Growth of large-area graphene films from metal-carbon melts', Journal of Applied Physics, vol. 108, p.094321, 2010. [81]C. N. G Majni, Growth kinetics of NiSi on (100) and (111) silicon, Journal of Physics D: Applied Physics, vol. 17, pp. 77-81, 1984. [82]E. G. J.T. Mayer, Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide, Surface Science vol. 265, pp. 102-110, 1992. [83]K. Kanomata, K. Momiyama, S. Kubota, T. Suzuki, and F. Hirose, Solid phase growth of NiSi in polycrystalline Si on SiO2 with Cl plasma containing NiCl, Applied Surface Science, vol. 268, pp. 141-145, 2013. [84]G. D. Nessim, A. J. Hart, J. S. Kim, D. Acquaviva, J. Oh, C. D. Morgan, M. Seita, J. S. Leib, and C. V. Thompson, Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment, Nano Lett, vol. 8, pp. 3587-3593, 2008. [85]D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and a. G. Yu, Synthesis of N doped graphene by chemical vapor deposition and its electrical properties, Nano Letters, vol. 9, pp. 1752-1758, 2009. [86]D. Takagi, Y. Kobayashi, and Y. Homma, Carbon nanotubes growth from diamond, Journal of the American Chemical Society, vol. 131, pp. 6922-6923, 2009. [87]N. Muradov, F. Smith, and A. T-Raissi, Catalytic activity of carbons for methane decomposition reaction, Catalysis Today, vol. 102-103, pp. 225-233, 2005. [88]A. Saffarzadeh, Modeling of gas adsorption on graphene nanoribbons, Journal of Applied Physics, vol. 107, p. 114309, 2010. [89]L. K. Randeniya, H. Shi, A. S. Barnard, J. Fang, P. J. Martin, and K. K. Ostrikov, Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing, Small, vol. 9, pp. 3993-3999, 2013. [90]B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, Adsorption of gas molecules on graphene nanoribbons and Its implication for nanoscale molecule sensor, The Journal of Physical Chemistry C, vol. 112, pp. 13442-13446, 2008. [91]H. Choi, H. Y. Jeong, D.-S. Lee, C.-G. Choi, and S.-Y. Choi, Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition, Carbon letters, vol. 14, pp. 186-189, 2013. [92]H. Gong, Y. J. Wang, S. C. Teo, and L. Huang, Interaction between thin-film tin oxide gas sensor and five organic vapors, Sensors and Actuators B, vol. 54, pp. 232-235, 1999. [93]S. Liu, F. Zhang, H. Li, T. Chen, and Y. Wang, Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template, Sensors and Actuators B: Chemical, vol. 162, pp. 259-268, 2012.
|