|
[1] S. Akbari and A. Alipour, Multicolored trees in complete graphs, J. Graph Theory 54(2006), 221-232. [2] S. Akbari, A. Alipour, H. L. Fu and Y. H. Lo, Multicolored parallelisms of isomorphic spanning trees, SIAM J. Discrete Math. 20(2006), No. 3, 564-567. [3] N. Alon, R. A. Brualdi and B. L. Shader, Multicolored forests in bipartite decomposition of graphs, J. Combin. Theory Ser. B 53(1991) 143-148. [4] M. Albert, A. Frieze nd B. Reed, Multicolored Hamilton cycles, Electronic J. Combin. 2(1995), R10. [5] R. B. Bapat, Mixed discriminants and spanning trees, Sankhy¯a Ser. A, 54(1992), 49-55. [6] R. B. Bapat and G. M. Constantine, An enumerating function for spanning forests with color restrictions, Linear Algebra and Its Applications, 173(1992), 231-237. [7] D. Banks, G. M. Constantine, A. Merriwether and R. LaFrance, Nonparametric inference on mtDNA mismatches, J. Nonparametre. Statist., 11(1999), 215-232. [8] H. J. Broersma, X. Li, G. Woeginger and S. Zhang, Paths and cycles in colored graphs, Australasian J. Combin. 31(2005), 297-309. [9] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37(1941), 194-197. [10] R. A. Brualdi and S. Hollingsworth, Multicolored trees in complete graphs, J. Combin. Theory Ser. B 68 (1996), No. 2, 310-313. [11] P. J. Cameron, Parallelisms of complete designs, London Math. Soc. Lecture Notes Series 23, Cambridge University Press, Cambridge, UK, 1976. [12] H. Chen and X. Li, Long heterochromatic paths in edge-colored graphs, Electron. J. Combin. 12(2005), #R33. [13] H. Chen and X. Li, Color degree and color neighborhood union conditions for long heterochromatic paths in edge-colored graphs, arXiv:math.CO/0512144 v1 7 Dec (2005). [14] G. M. Constantine, Multicolored parallelisms of isomorphic spanning trees, Discrete Math. Theor. Comput. Sci. 5(2002), No. 1, 121-125. [15] G. M. Constantine, Edge-disjoint isomorphic multicolored trees and cycles in complete graphs, SIAM J. Discrete Math. 18(2005), No. 3, 577-580. [16] J. Denes and A. D. Keedwell, Latin Squares and Their Applications, Academic Press, New York, 1974. [17] P. Erd˝os and T. Gallai, On maximal paths and circuits of graphs, Acta. Math. Acad. Sc. Hungar. 10(1959), 337-356. [18] P. Erd˝os, J. Nesetril and V. Rodl, Some problems related to partitions of edges of a graph, Graphs and Other Combinatorial Topics, Teubner, Leipzig, (1983), 54-63. [19] J. B. Fraleigh, A first course in abstract algebra, Pearson Education, U. S., 2003. [20] H. L. Fu and Y. H. Lo, Multicolored parallelisms of Hamiltonian cycles, Discrete Math. 309(2009), No. 14, 4871-4876. [21] H. L. Fu, Y. H. Lo and R. Y. Pei, Edge-colorings of Km,n which forbid multicolored cycles, Utilitas Mathematica, to appear. [22] H. L. Fu and Y. H. Lo, Multicolored isomorphic spanning trees in complete graphs, Ars Combinatoria, to appear. [23] H. L. Fu and Y. H. Lo, Multicolored spanning trees in edge-colored complete graphs, SIAM J. Discrete Math., revised. [24] A. Frieze and B. Reed, Polychromatic Hamilton cycles, Discrete Math. 118(1993), 69-74. [25] A. Gouge, D. Hoffman, P. Johnson, L. Nunley and L. Paben, Edge-colorings of Kn which forbid rainbow cycles, Utilitas Mathematica, to appear. [26] F. Harari, Parallel comcepts in Graph Theory, Math. Comput. 18(1993), No. 7, 101-105. [27] I. N. Herstein, Abstract algebra, John Wiley & Sons, New York, 1999. [28] P. Hatami and P. W. Shor, A lower bound for the length of a partial transversal in a Latin square, J. Combin. Theory, Series A, 115(2008), 1103-1113. [29] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers and an edge coloring conjecture, Discrete Math. 62(1986), 29-33. [30] M. Jacroux, On the construction of sets of integers with equal power sums, J. Number Theory, 52(1995), No. 1, 35-42. [31] M. Kano and X. L. Li, Monochromatic and Heterochromatic Subgraphs in Edge- Colored Graphs - A survey, Graphs and Combinatorics 24(2008), No. 4, 237-263. [32] J. Krussel, S. Marshal and H. Verral, Spanning Trees Orthogonal to One-Factorizations of K2n, Ars Combin. 57(2000), 77-82. [33] J. J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs and Combinatorics, 21(2005), 343-354. [34] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3(1964), 25-30. [35] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ 07458, 2001. [36] D. E. Woolbright and H. L. Fu, On the exists of rainbows in 1-factorizations of K2n, J. Combin. Des. 6(1998), 1-20. [37] H. P. Yap, Total colourings of graphs, Lecture Notes in Mathematics, 1623. Springer-Verlag, Berlin, 1996.
|