跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖純慧
研究生(外文):Chun-Huei Liao
論文名稱:炸油飲食導致葡萄糖不耐之研究
論文名稱(外文):Study on the glucose intolerance effect of oxidized frying oil
指導教授:趙蓓敏
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:241
中文關鍵詞:氧化炸油共軛亞麻油酸葡萄糖不耐低胰島素血症C57BL/6J
外文關鍵詞:Oxidized frying oilConjugated linoleic acidGlucose intoleranceHypoinsulinemiaC57BL/6J
相關次數:
  • 被引用被引用:2
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前研究發現炸油飲食在大 / 小鼠均會導致體脂降低伴隨葡萄糖不耐發生。本研究目的在探討炸油導致葡萄糖不耐之機制。

實驗一為比較炸油導致現象是否與共軛亞麻油酸(Conjugated linoleic acid,CLA)引起的Lipodystrophy diabetes類似。將51隻C57BL/6J公鼠分為5組。為觀察CLA之Lipodystrophy diabetes效果設計LF與CLA組,分別餵食含4%新鮮油(LF)與4%新鮮油添加1% CLA(c9,t11:t10,c12=1:1)mixture(CLA)飼料;為觀察炸油效果,設計HF、FO及HO三組,分別餵食20% 新鮮油(HF),10%新鮮油 + 10%炸油(FO)及20%炸油(HO)。炸油來自新鮮黃豆油以205 ± 5 ℃油炸麵片24小時,餵食4週後禁食狀態下犧牲。結果顯示CLA飲食熱量效率降低與白色脂肪組織削減程度更甚於炸油飲食,且兩種飲食均導致肝腫大現象。血脂質方面,CLA飲食與炸油飲食均會使血清三酸甘油酯與游離脂肪酸降低,但CLA飲食會增加血清總脂質與膽固醇含量,相對餵食炸油飲食其血清總脂質與膽固醇仍然降低。此外,可觀察到CLA會造成肝臟三酸甘油酯與膽固醇嚴重堆積,相對於炸油飲食肝臟PPARα下游基因ACO表現增加及肝臟三酸甘油酯降低,乃因促進肝臟之脂肪酸氧化及抑制脂肪酸生合成所致。另以RT-PCR來偵測脂肪細胞分化、脂質生合成及脂肪細胞激素相關基因PPARγ2、LPL、FAS及Leptin。發現餵食小鼠CLA飲食會大幅降低PPARγ2、LPL、FAS與Leptin,明顯抑制脂肪細胞分化與脂質生合成;DNA Ladder顯示CLA飲食導致脂肪組織細胞凋亡。炸油組之PPARγ2、LPL與Leptin僅輕微下降,表示炸油並不像CLA飲食對脂肪細胞分化及脂質生合成有如此大的影響且並無細胞凋亡現象。在胰島素敏感性方面,於試驗第二週進行腹腔注射胰島素測試(ITT),發現2小時內血糖變化之曲線下面積(AUCglu)CLA顯著高於LF組(p<0.05),顯示CLA導致週邊組織對胰島素產生阻抗現象,而HO組顯著低於HF組(p<0.05)。葡萄糖耐受性方面,試驗第四週進行口服葡萄糖耐量測試(OGTT),發現2小時內血糖變化之曲線下面積(AUCglu)HO組顯著高於HF組(p<0.05),顯示HO導致葡萄糖不耐,而CLA與LF組無顯著差異。於飽食狀態下,CLA導致飽食血糖與飽食胰島素顯著上升,而HO導致飽食胰島素顯著下降但對飽食血糖則無影響。故炸油與CLA引起之葡萄糖代謝不正常機制不同,並非是週邊組織胰島素阻抗而可能是胰臟分泌胰島素量不足。

由實驗一觀察到炸油導致血清胰島素降低,為進一步了解胰島素降低原因是否為胰臟β-細胞破壞導致胰島素分泌不足,因此設計實驗二來探討炸油飲食對胰臟胰島素分泌之影響。將32隻C57BL/6J公鼠分為3組,分別餵食含4%新鮮油(LF),20%新鮮油(HF),及20%炸油(HO),餵食24週後飽食狀態下犧牲。飼養期間進行OGTT時同時追蹤血糖、血清胰島素與血清C-胜肽含量,發現HO組血糖高於它組、血清胰島素與血清C-胜肽低於它組,顯示出HO可能導致胰臟β-細胞破壞而使胰島素分泌不足。另外觀察到炸油組肝臟與胰臟維生素E含量均顯著下降,證實炸油組小鼠維生素E缺乏。


综合上述,以上結果顯示炸油導致之葡萄糖不耐與CLA導致之Lipodystrophy diabetes不同。已知CLA導致小鼠Lipodystrophy diabetes乃因週邊組織胰島素阻抗,高胰島素血症是其特徵。本研究顯示炸油飲食所致葡萄糖不耐並非週邊胰島素阻抗,而是胰臟Islet分泌胰島素不足所致,可能原因是胰臟過氧化壓力增加、發炎反應或維生素E缺乏所致。
We had previously found that dietary oxidized frying oil (OFO)could decrease body fat and induce glucose intolerance in the rats and mice. The aim of this study was to investigate the mechanism of OFO induced glucose intolerance in mice.

Experiment 1 was designed for comparing the OFO effect with the conjugated linoleic acid (CLA) induced lipodystrophy diabetes . 51 C57BL/6J mice were divided into five groups. In order to observe the lipodystrophy diabetes induced by CLA, LF and the CLA group were set, to receive a diet containing 4% (g/g) fresh soybean oil (LF)and LF diet plus 1% CLA mixture(c9,t11:t10,c12=1:1), respectively. In order to observe the effect of OFO, HF, FO and the HO group were set, to receive a diet containing 20% fresh soybean oil (HF), 10% fresh soybean oil plus 10% OFO (FO)and 20% OFO (HO), respectively. The OFO was prepared by frying wheat dough sheets in soybean oil at 205 ± 5 ℃ for 24 hours. After 4 weeks, mice were killed after an overnight fasting. The results showed the CLA diet could reduce the energy efficiency and the white adipose deposition more prominant than the OFO diet. Both diets(CLA and OFO)could result in liver enlargement. The both diets could also reduce the serum levels of triglyceride and free fatty acids, but the CLA diet caused an increase in the serum levels of total lipid and cholesterol. In contrast, the OFO diet caused a reduction in the serum levels of total lipid and the cholesterol. Moreover, the CLA diet resulted in the accumulation of triglyceride and cholesterol in liver seriously. However, the OFO diet resulted in an up-regulation of PPAR alpha target gene-ACO and the liver triglyceride was significantly reduced by OFO diet, which could be attributed to the increase of fatty acid oxidation and suppression of fatty acid synthesis in the liver. For understanding the two diets effect on adipocyte differentiation, lipogenesis and production of adipocytokines, mRNA levels of peroxisome proliferators-activated receptor gamma 2(PPARγ2), lipoprotein lipase(LPL), fatty acid synthase(FAS)and leptin were measured by real time PCR. Results showed the expression of PPAR gamma 2, LPL, FAS and leptin in adipose tissues were greatly reduced by dietary CLA, indicating a serious suppression on the adipocyte differentiation and lipogenesis. Adipocyte apoptosis were demonstrated by DNA ladder in the CLA diet group. The expression of PPAR gamma 2, LPL and leptin were only slightly reduced by OFO diet , indicating that the OFO diet, unlike the CLA diet, didn’t suppress the adipocyte differentiation and the lipogenesis so prominat as CLA diet and the adipocyte apoptosis was not observed in OFO diet group. About the insulin sensitive, an ITT was conducted at wk2, and the AUCglu showed the CLA group had a significant higher level than the LF group(p<0.05), demonstrating the peripheral insulin resistance was happened in CLA group, but the AUCglu in the HO group was significantly lower than that in the HF group(p<0.05). In addition, an OGTT was conducted at wk4 and the AUCglu showed the HO group had a significantly higher level than the HF group(p<0.05), demonstrating the glucose intolerance was happened in the OFO group, but not the CLA group. The CLA group also showed a significantly higher blood sugar and the insulin levels at feeding status, but HO group had a significantly lower blood insulin level than the HF group. Therefore, the mechanism of OFO diet induced glucose metabolism impairment is different from the CLA diet, which is not insulin resistance, but an impairment in insulin secretion from pancreas is involved.

As the hypoinsulinemia was observed in the OFO group, to explore the possibility of destruction of pancreas beta cells and the impairment of insulin secretion, experiment 2 was conducted. 32 C57BL/6J mice were divided into three groups, to receive a diet containing 4% (g/g)fresh soybean oil (LF), 20% fresh soybean oil (HF) or OFO (HO), respectively. After 24 weeks, mice were killed at feeding status. The blood sugar, serum insulin and the C-peptide were measured simultaneously during an OGTT. Results showed the HO group had a significantly higher blood sugar, but the serum insulin and C-peptide were significantly lower than the other two groups, demonstrating HO group did cause pancreas beta cell destroy and result in the insulin secretion insufficiency. The analysis of vitamin E in liver and pancreas demonstrating vitamin E deficiency was observed in the HO group.

In conclusion, our results showed OFO causes the glucose intolerance in mice, which is different from the CLA caused lipodystrophy diabetes. It is well-know that CLA induced lipodystrophy diabetes had characterstic of peripheral insulin resistance, and hyperinsulinemia was observed in CLA-fed mice. This study demonstrated that the glucose intolerance induced by the HO diet is not related with the peripheral insulin resistance, but the pancreas destruction and insulin secretion insufficiency is the main reason. The possibility of pancreas peroxidation, the inflammation, or vitamin E deficiency might be involved.
第一章 前言 1

第二章 文獻回顧 3
一、 氧化炸油 3
(一) 油脂於高溫炸油時之化學變化 4
(二) 油脂之化學性質及其相關之化學反應 4
(三) 影響油脂自氧化反應的因素 8
(四) 油脂品質之鑑定 9
(五) 受熱氧化油脂及其分離物對動物體之影響 10
二、 共軛亞麻油酸 15
(一) 共軛亞麻油酸緣起與種類 15
(二) 共軛亞麻油酸對脂質堆積及胰島素敏感性之影響 17
(三) 共軛亞麻油酸對生物體之影響 19
(四) 影響胰島素阻抗性之脂肪細胞激素 24
(五) 脂質生合成之相關基因 28
三、 胰島素之分泌 33
(一) 胰臟組織生理解剖 33
(二) 胰臟組織之胰島(Islet) 35
(三) 胰島素與C-胜肽 37

第三章 材料與方法 39
第一節 實驗假說與設計 39
第二節 實驗一:比較共軛亞麻油酸(CLA)與炸油飲食對C57BL / 6J小鼠葡萄糖代謝影響 43
一、 氧化炸油的製備 43
二、 試驗飼料配製 44
三、 動物飼養 46
四、 口服葡萄糖耐受試驗(OGTT) 46
(一) 全血葡萄糖含量測定 48
(二) 禁食血清胰島素測定法 48
五、 腹腔注射胰島素測試(ITT) 50
(一) 全血葡萄糖含量測定 51
(二) 飽食血清胰島素測定法 52
六、 動物犧牲與樣品收集 52
七、 血糖分析 53
八、 血清分析 54
(一) 血清酮體測定 54
九、 血清脂質分析 55
(一) 血清總脂質(Total Lipids)含量測定 55
(二) 血清三酸甘油酯(Triacylglycerol, TG)含量測定 56
(三) 血清膽固醇(Cholesterol)含量測定 57
(四) 血清游離脂肪酸(Non-Esterified Fatty Acid)含量測定 58
十、 肝臟脂質分析 60
(一) 肝脂質萃取液製備 60
(二) 肝臟三酸甘油酯(Triacylglycerol, TG)含量測定 61
(三) 肝臟膽固醇(Cholesterol)含量測定 62
十一、 肌肉GLUT4含量分析 63
(一) Isolation total membrane fraction of mice gastrocnemius tissue 63
(二) Lowry’s method蛋白質濃度測定 65
(三) 以西方點墨法分析肌肉之GLUT4蛋白質表現量 66
十二、 以RT-PCR分析副睪脂(EP)中RNA含量 77
(一) 總RNA之抽取 77
(二) RNA電泳 79
(三) RNA轉成cDNA(Reverse transcription reaction) 81
(四) Real time polymerase chain reaction(RP-PCR) 83
十三、 副睪脂(EP)之細胞凋亡分析 87
(一) 脂肪組織DNA之抽取 87
(二) DNA電泳 90
十四、 副睪脂(EP)中細胞激素含量測定 93
(一) 脂肪組織蛋白質之抽取 93
(二) Lowry’s method蛋白質濃度測定 95
十五、 以RT-PCR分析肝臟組織中RNA含量 95
十六、 統計分析 95

第三節 實驗二:研究炸油飲食引起C57BL / 6J小鼠葡萄糖不耐之機制 96
一、 氧化炸油的製備 96
二、 試驗飼料配製 96
三、 動物飼養 98
四、 口服葡萄糖耐受試驗(OGTT) 98
(一) 全血葡萄糖含量測定 99
(二) 血清胰島素含量測定 99
(三) 血清C-胜肽含量測定 101
五、 動物犧牲與樣品收集 103
六、 胰臟組織 104
(一) 胰臟組織中β-細胞(Insulin)之免疫染色 104
(二) 胰臟組織之bicyclo PGE2含量測定 112
(三) 胰臟組織之TNF-α含量測定 114
七、 血清bicyclo PGE2含量測定分析 115
八、 飽食狀態下之全血葡萄糖與血清胰島素含量分析 115
(一) 全血葡萄糖含量測定 115
(二) 飽食血清胰島素測定法 116
九、 以RT-PCR分析副睪脂(EP)中RNA含量 116
十、 以RT-PCR分析肝臟組織中RNA含量 116
十一、 統計分析 116





第四章 結果 117
第一節 實驗一:比較共軛亞麻油酸(CLA)與炸油飲食對C57BL / 6J小鼠葡萄糖代謝影響 117
一、 共軛亞麻油酸與炸油對攝食及飼料效率影響 117
二、 共軛亞麻油酸與炸油對生長影響 118
三、 共軛亞麻油酸與炸油對組織之絕對及相對重量影響 118
四、 共軛亞麻油酸與炸油對血脂質含量影響 120
五、 共軛亞麻油酸與炸油對肝脂質含量影響 121
六、 共軛亞麻油酸與炸油於口服葡萄糖耐受試驗對血糖變化之影響 121
七、 共軛亞麻油酸與炸油於腹腔注射胰島素測試對血糖變化之影響 123
八、 共軛亞麻油酸與炸油對禁食血糖及胰島素與飽食血糖及胰島素之影響 124
九、 共軛亞麻油酸與炸油對血清酮體之影響 125
十、 共軛亞麻油酸與炸油對肌肉組織GLUT4蛋白質之影響 126
十一、 共軛亞麻油酸與炸油對脂肪組織mRNA之影響 126
十二、 共軛亞麻油酸與炸油對脂肪組織細胞凋亡之影響 127
十三、 共軛亞麻油酸與炸油對肝臟組織mRNA之影響 127





第二節 實驗二:研究炸油飲食引起C57BL / 6J小鼠葡萄糖不耐之機制 149
一、 長期給食炸油飲食對攝食及飼料效率影響 149
二、 長期給食炸油飲食對生長影響 150
三、 長期給食炸油飲食對組織之絕對及相對重量影響 150
四、 長期給食炸油飲食於飽食狀態下對血糖及血清胰島素之影響 152
五、 長期給食炸油飲食於禁食狀態下對血糖及血清胰島素之影響 152
六、 長期給食炸油飲食於口服葡萄糖耐受試驗(OGTT)對血糖、血清胰島素及血清C-胜肽之影響 153
七、 長期給食炸油飲食對胰臟組織切片與β-細胞免疫染色之影響 155
八、 長期給食炸油飲食對胰臟組織中TNF-α之影響 155
九、 長期給食炸油飲食對胰臟組織與血清bicyclo PGE2之影響 156
十、 長期給食炸油飲食對脂肪組織mRNA之影響 156
十一、 長期給食炸油飲食對肝臟組織mRNA之影響 157

第五章 討論 188
第六章 結論 205
第七章 參考文獻 207
1. Nolen GA, Alexander JC, Artman NR. Long-term rat feeding study with used frying fats. J Nutr. 1967 Nov;93(3):337-48.
2. Poling CE, Eagle E, Rice EE, Durand AM, Fisher M. Long-term responses of rats to heat-treated dietary fats. IV. weight gains, food and energy efficiencies, longevity and histopathology. Lipids. 1970 Jan;5(1):128-36.
3. 湯雅理. 炸油餵食對老鼠肝中維生素A含量及肝微粒體Cytochrome P-450酵素活性之影響 [dissertation]. 國立台灣大學農業化學研究所碩士論文; 1994.
4. 劉珍芳. 炸油餵食對老鼠體內維生素E代謝之影響 [dissertation]. 國立台灣大學農業化學研究所博士論文; 1993.
5. 黃曉婷. 炸油對大鼠腹部脂質堆積、脂肪細胞分化及胰島素敏感性研究 [dissertation]. 中國醫藥大學營養所碩士論文; 2005.
6. Poirier H, Niot I, Clement L, Guerre-Millo M, Besnard P. Development of conjugated linoleic acid (CLA)-mediated lipoatrophic syndrome in the mouse. Biochimie. 2005 Jan;87(1):73-9.
7. Flickinger BD, McCusker RH,Jr, Perkins EG. The effects of cyclic fatty acid monomers on cultured porcine endothelial cells. Lipids. 1997 Sep;32(9):925-33.
8. 徐瑨. 炸油活化PPARα之成分分析 [dissertation]. 國立台灣大學農業化學研究所碩士論文; 2003.
9. 趙蓓敏. 氧化炸油活化PPARα 之探討 [dissertation]. 國立台灣大學農業化學研究所博士論文; 2002.
10. Lohrey EE, Hughes IR, Gray IK. Effect of dietary lipid oxidation on measurement of protein efficiency ratios. J Assoc Off Anal Chem. 1978 Jan;61(1):104-10.
11. 張為憲, 李敏雄, 呂政義, 張永和, 陳昭雄, 孫璐西, 陳怡宏, 張基郁, 顏國欽, et al. 食品化學. 國立編譯館, editor. 華香園出版社; 1995.
12. Artman NR. The chemical and biological properties of heated and oxidized fats. Adv Lipid Res. 1969;7:245-330.
13. Kanazawa K, Kanazawa E, Natake M. Uptake of secondary autoxidation products of linoleic acid by the rat. Lipids. 1985 Jul;20(7):412-9.
14. Artman NR. The chemical and biological properties of heated and oxidized fats. Adv Lipid Res. 1969;7:245-330.
15. Chang SS, Peterson RJ, Ho CT. Chemical reactions involved in the deep-fat frying of foods. J Am Oil Chem Soc. 1978 Oct;55(10):718-27.
16. Siu M, Thompson LU. Effect of succinylation on the protein quality and urinary excretion of bound and free amino acids. J Agric Food Chem. 1982 Nov-Dec;30(6):1179-83.
17. CRAMPTON JM, VOSS E. An investigation of the chronic toxicity and acceptability of castrix. J Am Pharm Assoc Am Pharm Assoc. 1952 Mar;41(3):135-8.
18. Combe N, Constantin MJ, Entressangles B. Lymphatic absorption of nonvolatile oxidation products of heated oils in the rat. Lipids. 1981 Jan;16(1):8-14.
19. GUILMAIN J, JOHNSON RE, KAUNITZ H, KNIGHT HB, SAUNDERS DH, SLANETZ CA, SWERN D. Nutritional properties of the molecularly distilled fractions of autoxidized fats. J Nutr. 1956 Oct 10;60(2):237-44.
20. Alexander JC. Biological effects due to changes in fats during heating. J Am Oil Chem Soc. 1978 Oct;55(10):711-7.
21. 龐春蕾. 油炸油產物之分離鑑定及毒性之探討 [dissertation]. 國立台灣大學農業化學研究所碩士論文; 1989.
22. 吳映蓉. 膳食炸油對乳腺腫瘤之促進作用與雌激素之角色 [dissertation]. 國立台灣大學農業化學研究所博士論文; 1996.
23. Chao PM, Chao CY, Lin FJ, Huang C. Oxidized frying oil up-regulates hepatic acyl-CoA oxidase and cytochrome P450 4 A1 genes in rats and activates PPARalpha. J Nutr. 2001 Dec;131(12):3166-74.
24. Chao PM, Yang MF, Tseng YN, Chang KM, Lu KS, Huang CJ. Peroxisome proliferation in liver of rats fed oxidized frying oil. J Nutr Sci Vitaminol (Tokyo). 2005 Oct;51(5):361-8.
25. Sulzle A, Hirche F, Eder K. Thermally oxidized dietary fat upregulates the expression of target genes of PPAR alpha in rat liver. J Nutr. 2004 Jun;134(6):1375-83.
26. Chao PM, Huang HL, Liao CH, Huang ST, Huang CJ. A high oxidised frying oil content diet is less adipogenic, but induces glucose intolerance in rodents. Br J Nutr. 2007 Apr 16:1-9.
27. Martin JC, Joffre F, Siess MH, Vernevaut MF, Collenot P, Genty M, Sebedio JL. Cyclic fatty acid monomers from heated oil modify the activities of lipid synthesizing and oxidizing enzymes in rat liver. J Nutr. 2000 Jun;130(6):1524-30.
28. 湯雅理. 飲食炸油與腎臟前列腺素E2合成 [dissertation]. 國立台灣大學農業化學研究所博士論文; 2000.
29. Ip C, Singh M, Thompson HJ, Scimeca JA. Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res. 1994 Mar 1;54(5):1212-5.
30. Lee KN, Kritchevsky D, Pariza MW. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis. 1994 Jul;108(1):19-25.
31. Cook JA, Geisel J, Halushka PV, Reines HD. Prostaglandins, thromboxanes, leukotrienes, and cytochrome P-450 metabolites of arachidonic acid. New Horiz. 1993 Feb;1(1):60-9.
32. Belury MA, Kempa-Steczko A. Conjugated linoleic acid modulates hepatic lipid composition in mice. Lipids. 1997 Feb;32(2):199-204.
33. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997 Aug;32(8):853-8.
34. West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol. 1998 Sep;275(3 Pt 2):R667-72.
35. West DB, Blohm FY, Truett AA, DeLany JP. Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr. 2000 Oct;130(10):2471-7.
36. Brodie AE, Manning VA, Ferguson KR, Jewell DE, Hu CY. Conjugated linoleic acid inhibits differentiation of pre- and post- confluent 3T3-L1 preadipocytes but inhibits cell proliferation only in preconfluent cells. J Nutr. 1999 Mar;129(3):602-6.
37. Evans M, Geigerman C, Cook J, Curtis L, Kuebler B, McIntosh M. Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids. 2000 Aug;35(8):899-910.
38. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 2000 Sep;49(9):1534-42.
39. Riserus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. 2002 Sep;25(9):1516-21.
40. Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, et al. Isomer-specific antidiabetic properties of conjugated linoleic acid. improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes. 2001 May;50(5):1149-57.
41. Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA. Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun. 1998 Mar 27;244(3):678-82.
42. Nagao K, Inoue N, Wang YM, Yanagita T. Conjugated linoleic acid enhances plasma adiponectin level and alleviates hyperinsulinemia and hypertension in zucker diabetic fatty (fa/fa) rats. Biochem Biophys Res Commun. 2003 Oct 17;310(2):562-6.
43. Benito P, Nelson GJ, Kelley DS, Bartolini G, Schmidt PC, Simon V. The effect of conjugated linoleic acid on plasma lipoproteins and tissue fatty acid composition in humans. Lipids. 2001 Mar;36(3):229-36.
44. Choi JS, Jung MH, Park HS, Song J. Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat-fed rats. Nutrition. 2004 Nov-Dec;20(11-12):1008-17.
45. Bhattacharya A, Rahman MM, Sun D, Lawrence R, Mejia W, McCarter R, O''Shea M, Fernandes G. The combination of dietary conjugated linoleic acid and treadmill exercise lowers gain in body fat mass and enhances lean body mass in high fat-fed male Balb/C mice. J Nutr. 2005 May;135(5):1124-30.
46. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 2000 Sep;49(9):1534-42.
47. Tsuboyama-Kasaoka N, Miyazaki H, Kasaoka S, Ezaki O. Increasing the amount of fat in a conjugated linoleic acid-supplemented diet reduces lipodystrophy in mice. J Nutr. 2003 Jun;133(6):1793-9.
48. Ohashi A, Matsushita Y, Kimura K, Miyashita K, Saito M. Conjugated linoleic acid deteriorates insulin resistance in obese/diabetic mice in association with decreased production of adiponectin and leptin. J Nutr Sci Vitaminol (Tokyo). 2004 Dec;50(6):416-21.
49. Wargent E, Sennitt MV, Stocker C, Mayes AE, Brown L, O''Dowd J, Wang S, Einerhand AW, Mohede I, et al. Prolonged treatment of genetically obese mice with conjugated linoleic acid improves glucose tolerance and lowers plasma insulin concentration: Possible involvement of PPAR activation. Lipids Health Dis. 2005 Jan 10;4(1):3.
50. Roche HM, Noone E, Sewter C, Mc Bennett S, Savage D, Gibney MJ, O''Rahilly S, Vidal-Puig AJ. Isomer-dependent metabolic effects of conjugated linoleic acid: Insights from molecular markers sterol regulatory element-binding protein-1c and LXRalpha. Diabetes. 2002 Jul;51(7):2037-44.
51. Riserus U, Berglund L, Vessby B. Conjugated linoleic acid (CLA) reduced abdominal adipose tissue in obese middle-aged men with signs of the metabolic syndrome: A randomised controlled trial. Int J Obes Relat Metab Disord. 2001 Aug;25(8):1129-35.
52. Riserus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. 2002 Sep;25(9):1516-21.
53. Riserus U, Vessby B, Arnlov J, Basu S. Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr. 2004 Aug;80(2):279-83.
54. Eyjolfson V, Spriet LL, Dyck DJ. Conjugated linoleic acid improves insulin sensitivity in young, sedentary humans. Med Sci Sports Exerc. 2004 May;36(5):814-20.
55. Naumann E, Carpentier YA, Saebo A, Lassel TS, Chardigny JM, Sebedio JL, Mensink RP, FunCLA Study Group. Cis-9, trans- 11 and trans-10, cis-12 conjugated linoleic acid (CLA) do not affect the plasma lipoprotein profile in moderately overweight subjects with LDL phenotype B. Atherosclerosis. 2006 Sep;188(1):167-74.
56. Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J Nutr. 2005 Apr;135(4):778-84.
57. Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr. 2004 Jun;79(6):1118-25.
58. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997 Aug;32(8):853-8.
59. DeLany JP, West DB. Changes in body composition with conjugated linoleic acid. J Am Coll Nutr. 2000 Aug;19(4):487S-93S.
60. West DB, Blohm FY, Truett AA, DeLany JP. Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr. 2000 Oct;130(10):2471-7.
61. Ostrowska E, Muralitharan M, Cross RF, Bauman DE, Dunshea FR. Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr. 1999 Nov;129(11):2037-42.
62. DeLany JP, Blohm F, Truett AA, Scimeca JA, West DB. Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol. 1999 Apr;276(4 Pt 2):R1172-9.
63. West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol. 1998 Sep;275(3 Pt 2):R667-72.
64. Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids. 1999 Mar;34(3):235-41.
65. Hargrave KM, Meyer BJ, Li C, Azain MJ, Baile CA, Miner JL. Influence of dietary conjugated linoleic acid and fat source on body fat and apoptosis in mice. Obes Res. 2004 Sep;12(9):1435-44.
66. Gavino VC, Gavino G, Leblanc MJ, Tuchweber B. An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr. 2000 Jan;130(1):27-9.
67. Navarro V, Zabala A, Macarulla MT, Fernandez-Quintela A, Rodriguez VM, Simon E, Portillo MP. Effects of conjugated linoleic acid on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. J Physiol Biochem. 2003 Sep;59(3):193-9.
68. Simon E, Macarulla MT, Churruca I, Fernandez-Quintela A, Portillo MP. Trans-10,cis-12 conjugated linoleic acid prevents adiposity but not insulin resistance induced by an atherogenic diet in hamsters. J Nutr Biochem. 2006 Feb;17(2):126-31.
69. Kang K, Miyazaki M, Ntambi JM, Pariza MW. Evidence that the anti-obesity effect of conjugated linoleic acid is independent of effects on stearoyl-CoA desaturase1 expression and enzyme activity. Biochem Biophys Res Commun. 2004 Mar 12;315(3):532-7.
70. Mirand PP, Arnal-Bagnard MA, Mosoni L, Faulconnier Y, Chardigny JM, Chilliard Y. Cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers do not modify body composition in adult sedentary or exercised rats. J Nutr. 2004 Sep;134(9):2263-9.
71. Faulconnier Y, Arnal MA, Patureau Mirand P, Chardigny JM, Chilliard Y. Isomers of conjugated linoleic acid decrease plasma lipids and stimulate adipose tissue lipogenesis without changing adipose weight in post-prandial adult sedentary or trained wistar rat. J Nutr Biochem. 2004 Dec;15(12):741-8.
72. Petridou A, Mougios V, Sagredos A. Supplementation with CLA: Isomer incorporation into serum lipids and effect on body fat of women. Lipids. 2003 Aug;38(8):805-11.
73. Zambell KL, Keim NL, Van Loan MD, Gale B, Benito P, Kelley DS, Nelson GJ. Conjugated linoleic acid supplementation in humans: Effects on body composition and energy expenditure. Lipids. 2000 Jul;35(7):777-82.
74. Thom E, Wadstein J, Gudmundsen O. Conjugated linoleic acid reduces body fat in healthy exercising humans. J Int Med Res. 2001 Sep-Oct;29(5):392-6.
75. Kreider RB, Ferreira MP, Greenwood M, Wilson M, Almada AL. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J Strength Cond Res. 2002 Aug;16(3):325-34.
76. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr. 2000 Dec;130(12):2943-8.
77. Kamphuis MM, Lejeune MP, Saris WH, Westerterp-Plantenga MS. The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. Int J Obes Relat Metab Disord. 2003 Jul;27(7):840-7.
78. Malpuech-Brugere C, Verboeket-van de Venne WP, Mensink RP, Arnal MA, Morio B, Brandolini M, Saebo A, Lassel TS, Chardigny JM, et al. Effects of two conjugated linoleic acid isomers on body fat mass in overweight humans. Obes Res. 2004 Apr;12(4):591-8.
79. Desroches S, Chouinard PY, Galibois I, Corneau L, Delisle J, Lamarche B, Couture P, Bergeron N. Lack of effect of dietary conjugated linoleic acids naturally incorporated into butter on the lipid profile and body composition of overweight and obese men. Am J Clin Nutr. 2005 Aug;82(2):309-19.
80. Mougios V, Matsakas A, Petridou A, Ring S, Sagredos A, Melissopoulou A, Tsigilis N, Nikolaidis M. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J Nutr Biochem. 2001 Oct;12(10):585-94.
81. Luongo D, Bergamo P, Rossi M. Effects of conjugated linoleic acid on growth and cytokine expression in jurkat T cells. Immunol Lett. 2003 Dec 15;90(2-3):195-201.
82. Yu Y, Correll PH, Vanden Heuvel JP. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: Evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta. 2002 Apr 15;1581(3):89-99.
83. Iwakiri Y, Sampson DA, Allen KG. Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by conjugated linoleic acid in murine macrophages. Prostaglandins Leukot Essent Fatty Acids. 2002 Dec;67(6):435-43.
84. Cheng WL, Lii CK, Chen HW, Lin TH, Liu KL. Contribution of conjugated linoleic acid to the suppression of inflammatory responses through the regulation of the NF-kappaB pathway. J Agric Food Chem. 2004 Jan 14;52(1):71-8.
85. Jaudszus A, Foerster M, Kroegel C, Wolf I, Jahreis G. Cis-9,trans-11-CLA exerts anti-inflammatory effects in human bronchial epithelial cells and eosinophils: Comparison to trans-10,cis-12-CLA and to linoleic acid. Biochim Biophys Acta. 2005 Dec 15;1737(2-3):111-8.
86. Yang M, Cook ME. Dietary conjugated linoleic acid decreased cachexia, macrophage tumor necrosis factor-alpha production, and modifies splenocyte cytokines production. Exp Biol Med (Maywood). 2003 Jan;228(1):51-8.
87. Eder K, Schleser S, Becker K, Korting R. Conjugated linoleic acids lower the release of eicosanoids and nitric oxide from human aortic endothelial cells. J Nutr. 2003 Dec;133(12):4083-9.
88. Changhua L, Jindong Y, Defa L, Lidan Z, Shiyan Q, Jianjun X. Conjugated linoleic acid attenuates the production and gene expression of proinflammatory cytokines in weaned pigs challenged with lipopolysaccharide. J Nutr. 2005 Feb;135(2):239-44.
89. Li Y, Watkins BA. Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acids. Lipids. 1998 Apr;33(4):417-25.
90. Liu KL, Belury MA. Conjugated linoleic acid reduces arachidonic acid content and PGE2 synthesis in murine keratinocytes. Cancer Lett. 1998 May 15;127(1-2):15-22.
91. Liu KL, Belury MA. Conjugated linoleic acid modulation of phorbol ester-induced events in murine keratinocytes. Lipids. 1997 Jul;32(7):725-30.
92. Kavanaugh CJ, Liu KL, Belury MA. Effect of dietary conjugated linoleic acid on phorbol ester-induced PGE2 production and hyperplasia in mouse epidermis. Nutr Cancer. 1999;33(2):132-8.
93. Cusack S, Jewell C, Cashman KD. The effect of conjugated linoleic acid on the viability and metabolism of human osteoblast-like cells. Prostaglandins Leukot Essent Fatty Acids. 2005 Jan;72(1):29-39.
94. Shen CL, Dunn DM, Henry JH, Li Y, Watkins BA. Decreased production of inflammatory mediators in human osteoarthritic chondrocytes by conjugated linoleic acids. Lipids. 2004 Feb;39(2):161-6.
95. Yamasaki M, Ikeda A, Oji M, Tanaka Y, Hirao A, Kasai M, Iwata T, Tachibana H, Yamada K. Modulation of body fat and serum leptin levels by dietary conjugated linoleic acid in sprague-dawley rats fed various fat-level diets. Nutrition. 2003 Jan;19(1):30-5.
96. Kelley DS, Warren JM, Simon VA, Bartolini G, Mackey BE, Erickson KL. Similar effects of c9,t11-CLA and t10,c12-CLA on immune cell functions in mice. Lipids. 2002 Jul;37(7):725-8.
97. Akahoshi A, Goto Y, Murao K, Miyazaki T, Yamasaki M, Nonaka M, Yamada K, Sugano M. Conjugated linoleic acid reduces body fats and cytokine levels of mice. Biosci Biotechnol Biochem. 2002 Apr;66(4):916-20.
98. Hayek MG, Han SN, Wu D, Watkins BA, Meydani M, Dorsey JL, Smith DE, Meydani SN. Dietary conjugated linoleic acid influences the immune response of young and old C57BL/6NCrlBR mice. J Nutr. 1999 Jan;129(1):32-8.
99. Lai C, Yin J, Li D, Zhao L, Chen X. Effects of dietary conjugated linoleic acid supplementation on performance and immune function of weaned pigs. Arch Anim Nutr. 2005 Feb;59(1):41-51.
100. Park HS, Cho HY, Ha YL, Park JH. Dietary conjugated linoleic acid increases the mRNA ratio of Bax/Bcl-2 in the colonic mucosa of rats. J Nutr Biochem. 2004 Apr;15(4):229-35.
101. Kelley DS, Taylor PC, Rudolph IL, Benito P, Nelson GJ, Mackey BE, Erickson KL. Dietary conjugated linoleic acid did not alter immune status in young healthy women. Lipids. 2000 Oct;35(10):1065-71.
102. Kelley DS, Simon VA, Taylor PC, Rudolph IL, Benito P, Nelson GJ, Mackey BE, Erickson KL. Dietary supplementation with conjugated linoleic acid increased its concentration in human peripheral blood mononuclear cells, but did not alter their function. Lipids. 2001 Jul;36(7):669-74.
103. Albers R, van der Wielen RP, Brink EJ, Hendriks HF, Dorovska-Taran VN, Mohede IC. Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid (CLA) isomers on immune function in healthy men. Eur J Clin Nutr. 2003 Apr;57(4):595-603.
104. Nugent AP, Roche HM, Noone EJ, Long A, Kelleher DK, Gibney MJ. The effects of conjugated linoleic acid supplementation on immune function in healthy volunteers. Eur J Clin Nutr. 2005 Jun;59(6):742-50.
105. Tricon S, Burdge GC, Kew S, Banerjee T, Russell JJ, Grimble RF, Williams CM, Calder PC, Yaqoob P. Effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on immune cell function in healthy humans. Am J Clin Nutr. 2004 Dec;80(6):1626-33.
106. Song HJ, Grant I, Rotondo D, Mohede I, Sattar N, Heys SD, Wahle KW. Effect of CLA supplementation on immune function in young healthy volunteers. Eur J Clin Nutr. 2005 Apr;59(4):508-17.
107. Lee KN, Kritchevsky D, Pariza MW. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis. 1994 Jul;108(1):19-25.
108. Nicolosi RJ, Rogers EJ, Kritchevsky D, Scimeca JA, Huth PJ. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery. 1997;22(5):266-77.
109. Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK. Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr. 2000 Aug;19(4):472S-7S.
110. Kritchevsky D, Tepper SA, Wright S, Czarnecki SK, Wilson TA, Nicolosi RJ. Conjugated linoleic acid isomer effects in atherosclerosis: Growth and regression of lesions. Lipids. 2004 Jul;39(7):611-6.
111. Mitchell PL, Langille MA, Currie DL, McLeod RS. Effect of conjugated linoleic acid isomers on lipoproteins and atherosclerosis in the syrian golden hamster. Biochim Biophys Acta. 2005 Jun 1;1734(3):269-76.
112. Valeille K, Ferezou J, Amsler G, Quignard-Boulange A, Parquet M, Gripois D, Dorovska-Taran V, Martin JC. A cis-9,trans-11-conjugated linoleic acid-rich oil reduces the outcome of atherogenic process in hyperlipidemic hamster. Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H652-9.
113. Munday JS, Thompson KG, James KA. Dietary conjugated linoleic acids promote fatty streak formation in the C57BL/6 mouse atherosclerosis model. Br J Nutr. 1999 Mar;81(3):251-5.
114. Toomey S, Harhen B, Roche HM, Fitzgerald D, Belton O. Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis. 2006 Jul;187(1):40-9.
115. Valeille K, Gripois D, Blouquit MF, Souidi M, Riottot M, Bouthegourd JC, Serougne C, Martin JC. Lipid atherogenic risk markers can be more favourably influenced by the cis-9,trans-11-octadecadienoate isomer than a conjugated linoleic acid mixture or fish oil in hamsters. Br J Nutr. 2004 Feb;91(2):191-9.
116. Choi N, Kwon D, Yun SH, Jung MY, Shin HK. Selectively hydrogenated soybean oil with conjugated linoleic acid modifies body composition and plasma lipids in rats. J Nutr Biochem. 2004 Jul;15(7):411-7.
117. Macarulla MT, Fernandez-Quintela A, Zabala A, Navarro V, Echevarria E, Churruca I, Rodriguez VM, Portillo MP. Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamster. Nutrition. 2005 Apr;21(4):512-9.
118. Inoue N, Nagao K, Hirata J, Wang YM, Yanagita T. Conjugated linoleic acid prevents the development of essential hypertension in spontaneously hypertensive rats. Biochem Biophys Res Commun. 2004 Oct 15;323(2):679-84.
119. Nagao K, Inoue N, Wang YM, Hirata J, Shimada Y, Nagao T, Matsui T, Yanagita T. The 10trans,12cis isomer of conjugated linoleic acid suppresses the development of hypertension in otsuka long-evans tokushima fatty rats. Biochem Biophys Res Commun. 2003 Jun 20;306(1):134-8.
120. Moloney F, Yeow TP, Mullen A, Nolan JJ, Roche HM. Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2004 Oct;80(4):887-95.
121. Noone EJ, Roche HM, Nugent AP, Gibney MJ. The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br J Nutr. 2002 Sep;88(3):243-51.
122. Smedman A, Vessby B. Conjugated linoleic acid supplementation in humans--metabolic effects. Lipids. 2001 Aug;36(8):773-81.
123. Tricon S, Burdge GC, Kew S, Banerjee T, Russell JJ, Jones EL, Grimble RF, Williams CM, Yaqoob P, Calder PC. Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am J Clin Nutr. 2004 Sep;80(3):614-20.
124. Ahima RS, Hileman SM. Postnatal regulation of hypothalamic neuropeptide expression by leptin: Implications for energy balance and body weight regulation. Regul Pept. 2000 Aug 25;92(1-3):1-7.
125. Kellerer M, Lammers R, Fritsche A, Strack V, Machicao F, Borboni P, Ullrich A, Haring HU. Insulin inhibits leptin receptor signalling in HEK293 cells at the level of janus kinase-2: A potential mechanism for hyperinsulinaemia-associated leptin resistance. Diabetologia. 2001 Sep;44(9):1125-32.
126. Estrada V, Serrano-Rios M, Martinez Larrad MT, Villar NG, Gonzalez Lopez A, Tellez MJ, Fernandez C. Leptin and adipose tissue maldistribution in HIV-infected male patients with predominant fat loss treated with antiretroviral therapy. J Acquir Immune Defic Syndr. 2002 Jan 1;29(1):32-40.
127. Kallen CB, Lazar MA. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5793-6.
128. Mantzoros CS, Qu D, Frederich RC, Susulic VS, Lowell BB, Maratos-Flier E, Flier JS. Activation of beta(3) adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice. Diabetes. 1996 Jul;45(7):909-14.
129. Rentsch J, Chiesi M. Regulation of ob gene mRNA levels in cultured adipocytes. FEBS Lett. 1996 Jan 22;379(1):55-9.
130. Slieker LJ, Sloop KW, Surface PL, Kriauciunas A, LaQuier F, Manetta J, Bue-Valleskey J, Stephens TW. Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP. J Biol Chem. 1996 Mar 8;271(10):5301-4.
131. Willi SM, Kennedy A, Wallace P, Ganaway E, Rogers NL, Garvey WT. Troglitazone antagonizes metabolic effects of glucocorticoids in humans: Effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids, and leptin. Diabetes. 2002 Oct;51(10):2895-902.
132. Asada N, Takahashi Y, Honjo M. Effects of 22K or 20K human growth hormone on lipolysis, leptin production in adipocytes in the presence and absence of human growth hormone binding protein. Horm Res. 2000;54(4):203-7.
133. Brennan BM, Rahim A, Blum WF, Adams JA, Eden OB, Shalet SM. Hyperleptinaemia in young adults following cranial irradiation in childhood: Growth hormone deficiency or leptin insensitivity? Clin Endocrinol (Oxf). 1999 Feb;50(2):163-9.
134. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000 Jun;20(6):1595-9.
135. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001 Aug;86(8):3815-9.
136. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001 May;50(5):1126-33.
137. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001 Aug;7(8):941-6.
138. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000 Jun;20(6):1595-9.
139. Yoda-Murakami M, Taniguchi M, Takahashi K, Kawamata S, Saito K, Choi-Miura NH, Tomita M. Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver. Biochem Biophys Res Commun. 2001 Jul 13;285(2):372-7.
140. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001 May;50(5):1126-33.
141. Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001 Dec;108(12):1875-81.
142. Okamoto Y, Arita Y, Nishida M, Muraguchi M, Ouchi N, Takahashi M, Igura T, Inui Y, Kihara S, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res. 2000 Feb;32(2):47-50.
143. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000 Sep 1;96(5):1723-32.
144. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001 Feb 27;103(8):1057-63.
145. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett. 2001 Oct 26;507(2):142-6.
146. Kappes A, Loffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm Metab Res. 2000 Nov-Dec;32(11-12):548-54.
147. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2005-10.
148. Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV. Human tumour necrosis factor: Precursor structure, expression and homology to lymphotoxin. Nature. 1984 Dec 20-1985 Jan 2;312(5996):724-9.
149. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992;10:411-52.
150. Vassalli P, Grau GE, Piguet PF. TNF in autoimmune diseases, graft-versus-host reactions, and pulmonary fibrosis. Immunol Ser. 1992;56:409-30.
151. Vassalli JD, Wohlwend A, Belin D. Urokinase-catalyzed plasminogen activation at the monocyte/macrophage cell surface: A localized and regulated proteolytic system. Curr Top Microbiol Immunol. 1992;181:65-86.
152. Tracey KJ, Cerami A. Tumor necrosis factor: An updated review of its biology. Crit Care Med. 1993 Oct;21(10 Suppl):S415-22.
153. Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis factor receptors: Structure and function. Trends Cell Biol. 1995 Oct;5(10):392-9.
154. Vandenabeele P, Declercq W, Vanhaesebroeck B, Grooten J, Fiers W. Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. J Immunol. 1995 Mar 15;154(6):2904-13.
155. Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex physiology of TNF. Cell. 1988 Apr 8;53(1):45-53.
156. Mohler KM, Sleath PR, Fitzner JN, Cerretti DP, Alderson M, Kerwar SS, Torrance DS, Otten-Evans C, Greenstreet T, Weerawarna K. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature. 1994 Jul 21;370(6486):218-20.
157. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994 Aug 18;370(6490):555-7.
158. Kawakami M, Pekala PH, Lane MD, Cerami A. Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci U S A. 1982 Feb;79(3):912-6.
159. Beutler BA, Milsark IW, Cerami A. Cachectin/tumor necrosis factor: Production, distribution, and metabolic fate in vivo. J Immunol. 1985 Dec;135(6):3972-7.
160. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869-71.
161. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science. 1993 Jan 1;259(5091):87-91.
162. Xu H, Uysal KT, Becherer JD, Arner P, Hotamisligil GS. Altered tumor necrosis factor-alpha (TNF-alpha) processing in adipocytes and increased expression of transmembrane TNF-alpha in obesity. Diabetes. 2002 Jun;51(6):1876-83.
163. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997 Jul 25;272(30):18779-89.
164. Fajas L, Fruchart JC, Auwerx J. PPARgamma3 mRNA: A distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett. 1998 Oct 30;438(1-2):55-60.
165. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998 Apr 17;93(2):241-52.
166. Fajas L, Fruchart JC, Auwerx J. PPARgamma3 mRNA: A distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett. 1998 Oct 30;438(1-2):55-60.
167. Zhou J, Wilson KM, Medh JD. Genetic analysis of four novel peroxisome proliferator activated receptor-gamma splice variants in monkey macrophages. Biochem Biophys Res Commun. 2002 Apr 26;293(1):274-83.
168. Entenmann G, Hauner H. Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol. 1996 Apr;270(4 Pt 1):C1011-6.
169. Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000 Dec;130(12):3122S-6S.
170. Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J Biol Chem. 1998 Nov 13;273(46):30057-60.
171. Feve B. Adipogenesis: Cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab. 2005 Dec;19(4):483-99.
172. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000 Jun 1;14(11):1293-307.
173. Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci. 2004 Jun;25(6):331-6.
174. Freytag SO, Paielli DL, Gilbert JD. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 1994 Jul 15;8(14):1654-63.
175. Tontonoz P, Kim JB, Graves RA, Spiegelman BM. ADD1: A novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol. 1993 Aug;13(8):4753-9.
176. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie. 2004 Nov;86(11):839-48.
177. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187-97.
178. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996 May 1;10(9):1096-107.
179. Edwards PA, Tabor D, Kast HR, Venkateswaran A. Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta. 2000 Dec 15;1529(1-3):103-13.
180. ROSS, ROMRELL, KAYE. 組織學. 合記圖書出版社.
181. 合記編著委員會 譯. Bailey’s 組織學. 合記圖書出版社.
182. Junquerira. 基礎組織學. 藝軒圖書出版社.
183. 張東杰, 鍾啟禮, 劉忠政, 容世明, 華筱玲, 褚柏顯, 林玉玲, 吳啟誠, 李隆乾, et al. 組織學圖譜. 藝軒圖書出版社.
184. 游祥明博士. 組織學. 藝軒圖書出版社.
185. Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 1997 May;127(5 Suppl):838S-41S.
186. Reeves PG, Nielsen FH, Fahey GC,Jr. AIN-93 purified diets for laboratory rodents: Final report of the american institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993 Nov;123(11):1939-51.
187. Reeves PG, Rossow KL, Lindlauf J. Development and testing of the AIN-93 purified diets for rodents: Results on growth, kidney calcification and bone mineralization in rats and mice. J Nutr. 1993 Nov;123(11):1923-31.
188. FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497-509.
189. de Carvalho Papa P, Vargas AM, da Silva JL, Nunes MT, Machado UF. GLUT4 protein is differently modulated during development of obesity in monosodium glutamate-treated mice. Life Sci. 2002 Sep 6;71(16):1917-28.
190. Allard MF, Wambolt RB, Longnus SL, Grist M, Lydell CP, Parsons HL, Rodrigues B, Hall JL, Stanley WC, Bondy GP. Hypertrophied rat hearts are less responsive to the metabolic and functional effects of insulin. Am J Physiol Endocrinol Metab. 2000 Sep;279(3):E487-93.
191. Freund P, Wolff HP, Kuhnle HF. (-)-BM 13.0913: A new oral antidiabetic agent that improves insulin sensitivity in animal models of type II (non-insulin-dependent) diabetes mellitus. Metabolism. 1995 May;44(5):570-6.
192. Nijs G, de Witte P, Lemli J. A rapid method for the estimation of prostaglandin E2 in intestinal tissues using fluorescence derivatization. Prostaglandins. 1991 Nov;42(5):421-9.
193. Tsuboyama-Kasaoka N, Miyazaki H, Kasaoka S, Ezaki O. Increasing the amount of fat in a conjugated linoleic acid-supplemented diet reduces lipodystrophy in mice. J Nutr. 2003 Jun;133(6):1793-9.
194. Ferramosca A, Savy V, Conte L, Colombo S, Einerhand AW, Zara V. Conjugated linoleic acid and hepatic lipogenesis in mouse: Role of the mitochondrial citrate carrier. J Lipid Res. 2006 Sep;47(9):1994-2003.
195. Noto A, Zahradka P, Ryz NR, Yurkova N, Xie X, Taylor CG. Dietary conjugated linoleic acid preserves pancreatic function and reduces inflammatory markers in obese, insulin-resistant rats. Metabolism. 2007 Jan;56(1):142-51.
196. Chung S, Brown JM, Provo JN, Hopkins R, McIntosh MK. Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J Biol Chem. 2005 Nov 18;280(46):38445-56.
197. Nagao K, Yanagita T. Conjugated fatty acids in food and their health benefits. J Biosci Bioeng. 2005 Aug;100(2):152-7.
198. Roche HM, Noone E, Sewter C, Mc Bennett S, Savage D, Gibney MJ, O''Rahilly S, Vidal-Puig AJ. Isomer-dependent metabolic effects of conjugated linoleic acid: Insights from molecular markers sterol regulatory element-binding protein-1c and LXRalpha. Diabetes. 2002 Jul;51(7):2037-44.
199. Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA. Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun. 1998 Mar 27;244(3):678-82.
200. Bissonauth V, Chouinard Y, Marin J, Leblanc N, Richard D, Jacques H. The effects of t10,c12 CLA isomer compared with c9,t11 CLA isomer on lipid metabolism and body composition in hamsters. J Nutr Biochem. 2006 Sep;17(9):597-603.
201. Riserus U, Vessby B, Arnlov J, Basu S. Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr. 2004 Aug;80(2):279-83.
202. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 2000 Sep;49(9):1534-42.
203. Miner JL, Cederberg CA, Nielsen MK, Chen X, Baile CA. Conjugated linoleic acid (CLA), body fat, and apoptosis. Obes Res. 2001 Feb;9(2):129-34.
204. Evans M, Geigerman C, Cook J, Curtis L, Kuebler B, McIntosh M. Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids. 2000 Aug;35(8):899-910.
205. Hargrave KM, Li C, Meyer BJ, Kachman SD, Hartzell DL, Della-Fera MA, Miner JL, Baile CA. Adipose depletion and apoptosis induced by trans-10, cis-12 conjugated linoleic acid in mice. Obes Res. 2002 Dec;10(12):1284-90.
206. Hargrave KM, Meyer BJ, Li C, Azain MJ, Baile CA, Miner JL. Influence of dietary conjugated linoleic acid and fat source on body fat and apoptosis in mice. Obes Res. 2004 Sep;12(9):1435-44.
207. Corino C, Di Giancamillo A, Rossi R, Domeneghini C. Dietary conjugated linoleic acid affects morphofunctional and chemical aspects of subcutaneous adipose tissue in heavy pigs. J Nutr. 2005 Jun;135(6):1444-50.
208. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem. 2006 Dec;17(12):789-810.
209. Zabala A, Fernandez-Quintela A, Macarulla MT, Simon E, Rodriguez VM, Navarro V, Portillo MP. Effects of conjugated linoleic acid on skeletal muscle triacylglycerol metabolism in hamsters. Nutrition. 2006 May;22(5):528-33.
210. Chen YY, Chen CM, Chao PY, Chang TJ, Liu JF. Effects of frying oil and houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents. World J Gastroenterol. 2005 Jan 21;11(3):389-92.
211. Brandsch C, Eder K. Effects of peroxidation products in thermoxidised dietary oil in female rats during rearing, pregnancy and lactation on their reproductive performance and the antioxidative status of their offspring. Br J Nutr. 2004 Aug;92(2):267-75.
212. Chao PM, Hsu SC, Lin FJ, Li YJ, Huang CJ. The up-regulation of hepatic acyl-CoA oxidase and cytochrome P450 4A1 mRNA expression by dietary oxidized frying oil is comparable between male and female rats. Lipids. 2004 Mar;39(3):233-8.
213. Belury MA, Kempa-Steczko A. Conjugated linoleic acid modulates hepatic lipid composition in mice. Lipids. 1997 Feb;32(2):199-204.
214. Kelley DS, Bartolini GL, Warren JM, Simon VA, Mackey BE, Erickson KL. Contrasting effects of t10,c12- and c9,t11-conjugated linoleic acid isomers on the fatty acid profiles of mouse liver lipids. Lipids. 2004 Feb;39(2):135-41.
215. House RL, Cassady JP, Eisen EJ, McIntosh MK, Odle J. Conjugated linoleic acid evokes de-lipidation through the regulation of genes controlling lipid metabolism in adipose and liver tissue. Obes Rev. 2005 Aug;6(3):247-58.
216. Brown JM, Boysen MS, Chung S, Fabiyi O, Morrison RF, Mandrup S, McIntosh MK. Conjugated linoleic acid induces human adipocyte delipidation: Autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. J Biol Chem. 2004 Jun 18;279(25):26735-47.
217. Brown JM, Halvorsen YD, Lea-Currie YR, Geigerman C, McIntosh M. Trans-10, cis-12, but not cis-9, trans-11, conjugated linoleic acid attenuates lipogenesis in primary cultures of stromal vascular cells from human adipose tissue. J Nutr. 2001 Sep;131(9):2316-21.
218. Evans M, Lin X, Odle J, McIntosh M. Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. J Nutr. 2002 Mar;132(3):450-5.
219. Evans M, Park Y, Pariza M, Curtis L, Kuebler B, McIntosh M. Trans-10,cis-12 conjugated linoleic acid reduces triglyceride content while differentially affecting peroxisome proliferator activated receptor gamma2 and aP2 expression in 3T3-L1 preadipocytes. Lipids. 2001 Nov;36(11):1223-32.
220. Brown JM, McIntosh MK. Conjugated linoleic acid in humans: Regulation of adiposity and insulin sensitivity. J Nutr. 2003 Oct;133(10):3041-6.
221. Granlund L, Pedersen JI, Nebb HI. Impaired lipid accumulation by trans10, cis12 CLA during adipocyte differentiation is dependent on timing and length of treatment. Biochim Biophys Acta. 2005 Feb 21;1687(1-3):11-22.
222. Kellerer M, Lammers R, Fritsche A, Strack V, Machicao F, Borboni P, Ullrich A, Haring HU. Insulin inhibits leptin receptor signalling in HEK293 cells at the level of janus kinase-2: A potential mechanism for hyperinsulinaemia-associated leptin resistance. Diabetologia. 2001 Sep;44(9):1125-32.
223. Fernandez-Galaz MC, Diano S, Horvath TL, Garcia-Segura LM. Leptin uptake by serotonergic neurones of the dorsal raphe. J Neuroendocrinol. 2002 Jun;14(6):429-34.
224. Ahima RS, Kelly J, Elmquist JK, Flier JS. Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology. 1999 Nov;140(11):4923-31.
225. Flier JS, Maratos-Flier E. Obesity and the hypothalamus: Novel peptides for new pathways. Cell. 1998 Feb 20;92(4):437-40.
226. Elmquist JK, Elias CF, Saper CB. From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron. 1999 Feb;22(2):221-32.
227. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 2000 Sep;49(9):1534-42.
228. Qi C, Pekala PH. Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc Soc Exp Biol Med. 2000 Feb;223(2):128-35.
229. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 2000 Sep;49(9):1534-42.
230. Moloney F, Yeow TP, Mullen A, Nolan JJ, Roche HM. Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2004 Oct;80(4):887-95.
231. Mullis PE, Pal BR, Matthews DR, Hindmarsh PC, Phillips PE, Dunger DB. Half-life of exogenous growth hormone following suppression of endogenous growth hormone secretion with somatostatin in type I (insulin-dependent) diabetes mellitus. Clin Endocrinol (Oxf). 1992 Mar;36(3):255-63.
232. Tsujinaka K, Nakamura T, Maegawa H, Fujimiya M, Nishio Y, Kudo M, Kashiwagi A. Diet high in lipid hydroperoxide by vitamin E deficiency induces insulin resistance and impaired insulin secretion in normal rats. Diabetes Res Clin Pract. 2005 Feb;67(2):99-109.
233. 林甫容. 以鼠肝癌細胞株H4IIEC3初探幾種PPARα活化物對維生素E代謝產物α-CEHC生成之影響 [dissertation]. 國立台灣大學農業化學研究所碩士論文; 2002.
234. Potashnik R, Bloch-Damti A, Bashan N, Rudich A. IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia. 2003 May;46(5):639-48.
235. Oshima H, Taketo MM, Oshima M. Destruction of pancreatic beta-cells by transgenic induction of prostaglandin E2 in the islets. J Biol Chem. 2006 Sep 29;281(39):29330-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top