|  | 
Chapter 1:[1]S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic”, Nature, vol. 428, pp. 911 (2004).
 [2]R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck, “Electroluminescence in conjugated polymers”, Nature, vol. 397, pp. 121 (1999).
 [3]W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., vol. 51, pp. 913 (1987).
 [4]G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers”, Nature, vol. 357, pp. 477 (1992).
 [5]J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham and M. A. Green, “24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research”, Sol. Energy Mater. Sol. Cells, vol. 41-42, pp. 87 (1996).
 [6]J. Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing”, Science, vol. 317, pp. 222 (2007).
 [7]S. Gunes, H. Neugebauer and N. S. Sariciftci, “Conjugated polymer-based organic solar cells”, Chem. Rev., vol. 107, pp. 1324 (2007).
 [8]B. C. Thompson and J. M. J. Fréchet, “Polymer–fullerene composite solar cells”, Angew. Chem. Int. Ed., vol. 47, pp. 58 (2008).
 [9]K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells”, Chem. Mater., vol. 16, pp. 4533 (2004).
 [10] M. Jorgensen, K. Norrman and F. C. Krebs, “Stability/degradation of polymer solar cells”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 686 (2008).
 [11] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley and J. R. Durrant, “Degradation of organic solar cells due to air exposure”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3520 (2006).
 [12] D. Gupta, M. Bag and K. S. Narayana, “Correlating reduced ll factor in polymer solar cells to contact effects”, Appl. Phys. Lett., vol. 92, pp. 093301 (2008).
 [13]B. Paci, A. Generosi, V. R. Albertini, P. Perfetti, R. de Bettignies, M. Firon, J. Leroy and C. Sentein, “In situ energy dispersive x-ray reectometry measurements on organic solar cells upon working”, Appl. Phys. Lett., vol. 87, pp. 194110 (2005).
 [14]B. Paci, A. Generosi, V.R. Albertini, P. Perfetti, R. de Bettignies, J. Leroy, M. Firon and C. Sentein, “Controlling photoinduced degradation in plastic photovoltaic cells: A time-resolved energy dispersive x-ray reectometry study”, Appl. Phys. Lett., vol. 89, pp. 043507 (2006).
 [15]K. Norrman, N. B. Larsen and F. C. Krebs, “Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2793 (2006).
 [16]M. Drees, H. Hoppe, C. Winder, H. Neugebauer, N. S. Sariciftci, W. Schwinger, F. Schaeffler, C. Topf, M.C. Scharber, Z. Zhu and R. Gaudiana, “Stabilization of the nanomorphology of polymer–fullerene bulk heterojunction blends using a novel polymerizable fullerene derivative”, J. Mater. Chem., vol. 15, pp. 5158 (2005).
 [17]C. H. Woo, B. C. Thompson, B. J. Kim, M.F. Toney and J. M. J. Fréchet, “The inuence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance”, J. Am. Chem. Soc., vol. 130, pp. 16324 (2008).
 [18]S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D’Haen, E. Goovaerts, L. Lutsen, J. Manca and D. Vanderzande,. “Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 753 (2008).
 [19]H. W. Choi, S. Y. Kim, W. K. Kim and J. L. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer”, Appl. Phys. Lett., vol. 87, pp. 082102 (2005).
 [20]Z. B. Deng, X. M. Ding, S. T. Lee and W. A. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers”, Appl. Phys. Lett., vol. 74, pp. 2227 (1999).
 [21]F. Li, H. Tang, J. Anderegg and J. Shinar, “Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3/Al cathode”, Appl. Phys. Lett., vol. 70, pp. 1233 (1997).
 [22]H. Tang, F. Li and J. Shinar, “Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes”, Appl. Phys. Lett., vol. 71, pp. 2560 (1997).
 [23]Y. E. Kim, H. Park and J. J. Kim, “Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films”, Appl. Phys. Lett., vol. 69, pp. 599 (1996).
 [24]S. T. Zhang, Y. C. Zhou, J. M. Zhao, Y. Q. Zhan, Z. J. Wang, Y. Wu, X. M. Ding and X. Y. Hou, “Role of hole playing in improving performance of organic light-emitting devices with an Al2O3 layer inserted at the cathode-organic interface”, Appl. Phys. Lett., vol. 89, pp. 043502 (2006).
 [25]Y.-H. Niu, H. Ma, Q. Xu and A. K.-Y. Jen, “High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode”, Appl. Phys. Lett., vol. 86, pp. 083504 (2005).
 [26]X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard and X. M. Ding, “Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode”, J. Appl. Phys, vol. 95, pp. 3828 (2004).
 [27]H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T. S. Kim, J. Hahn, S. Lee, Y. Yi and Mann-Ho Cho, “Improvement of the contact resistance between ITO and pentacene using various metal-oxide interlayers”, Org. Electron., vol. 9, pp. 1140 (2008).
 [28]Y. Kim, S. A. Choulis, J. Nelson and D. D. C. Bradley, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene”, Appl. Phys. Lett., vol. 86, pp. 063502 (2005).
 [29]Y. Kim, S. Cook, S. M. Tuldhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculooch, C. S. Ha and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells”, Nat. Mater., vol. 5, pp. 197 (2006).
 [30]G. Li, V. Shortriya, Y. Yao and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, J. Appl. Phys, vol. 98, pp. 043704 (2005).
 [31] V. D. Mihailetchi, H. Xie, B. de Boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom and L. J. A. Koster, “Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer”, Appl. Phys. Lett., vol. 89, pp. 012107 (2006).
 [32] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Morlarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater., vol. 4, pp. 864 (2005).
 [33] L. M. Chen, Z. Hong, G. Li and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells”, Adv, Mater., vol. 21, pp. 1434 (2009).
 [34] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer”, Appl. Phys. Lett., vol., 93, pp. 221107 (2008).
 [35] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer”, Appl. Phys. Lett., vol. 89, pp. 143517 (2006).
 [36] S. K. Hau, H.-L. Yip, H. Ma and A. K.-Y. Jen, “High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer”, Appl. Phys. Lett., vol., 93, pp. 233304 (2008).
 [37] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process”, J. Appl. Phys., vol. 97, pp. 121301 (2005).
 [38] P. F. Tian, P. E. Burrows and S. R. Forrest, “Photolithographic patterning of vacuum-deposited organic light emitting devices”, Appl. Phys. Lett., vol. 71, pp. 3197 (1997).
 [39]A. DeFranco, B. S. Schmidt, M. Lipson and G. G. Malliaras, “Photolithographic patterning of organic electronic materials”, Org. Electron., vol. 7, pp. 22 (2006).
 [40] J. Huang, R. Xia, Y. Kim,  X. Wang,  J. Dane, O. Hofmann, A. Mosley, A. J. de Mello, J. C. de Mello and D. D. C. Bradley, “Patterning of organic devices by interlayer lithography”, J. Mater. Chem., vol. 17, pp. 1043 (2007).
 [41]H. Kobayashi, S. Kanbe, S. Seki, H. Kigchi, M. Kimura, I. Yudasaka, S. Miyashita, T. Shimoda, C. R. Towns, J. H. Burroughes and R. H. Friend, “A novel RGB multi-color light-emitting polymer display”, Syn. Met., vol. 111, pp. 125 (2000).
 [42] T. Shimoda, S. Kanbe, H. Kobayashi, S. Seki, H. Kiguchi, I. Yudasaka, M. Kimura, S. Miyashita, R. H. Friend, J. H. Burroughes and C. R. Towns, “Multicolor pixel patterning of light-emitting polymers by ink-jet printing”, SID Symposium, pp. 376 (1999).
 [43]T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices”, Appl. Phys. Lett., vol. 72, pp. 519 (1998).
 [44]S.-C. Chang, J. Bharathan, Y. Yang, R. Helgeson, F. Wudl, M. B. Ramey and J. R. Reynolds, “Dual-color polymer light-emitting pixels processed by hybrid inkjet printing”, Appl. Phys. Lett., vol. 73, pp. 2561 (1998).
 [45]Y. Yang, S.-C. Chang, J. Bharathan and J. Liu, “Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing”, J. Mater. Sci.: Mater. Electron., vol. 11, pp. 89 (2000).
 [46] J. Birnstock, J. Blassing, A. Hunze, M. Scheffel, M. Stossel, K. Heuser, G. Wittmann, J. Worle and A. Winnacker, “Screen-printed passive matrix displays based on light-emitting polymers”, Appl. Phys. Lett., vol. 78, pp. 3905 (2001).
 [47] D. A. Pardo, G. E. Jabbour and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices”, Adv. Mater., vol. 12, pp. 1249 (2000).
 [48]C. C. Wu, J. C. Sturm, R. A. Register and M. E. Thompson, “Integrated three-color organic light-emitting devices”, Appl. Phys. Lett., vol. 69, pp. 3117 (1996).
 [49] S. Shirai and J. Kido, “Fabrication of multi color polymer EL devices using the photo-bleaching method”, J. Photopolym. Sci. Technol., vol. 14 (2001) pp. 317.
 [50] X. Luo and T. Ishihara, “Sub-100-nm Photolithography Based on Plasmon Resonance”, Jpn. J. Appl. Phys. 43, pp. 4017 (2004).
 [51] D. G. Lidzey, M. A. Pate, M. S. Weaver, T. A. Fisher and D. D. C. Bradley, “Photoprocessed and micropatterned conjugated polymer LEDs", Synth. Met., vol. 82, pp. 141 (1996).
 [52]J. S. Lewis and M. S. Weaver, “Thin-film permeation-barrier technology for flexible organic light-emitting devices”, IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 45 (2004).
 [53]W. S. Wong and A. Salleo, “Flexible electronics: materials and applications", Springer, vol. 11, pp. 406 (2009).
 [54]H.-C. Langowski, “Flexible barrier materials for technical applications", 46th Annual Technical Conference Proceedings, pp. 559 (2003).
 [55]G. Dennler, C. Lungenschmied, H. Neugebauer, H. S. Sariciftci, M. Latreche, G. Czeremuszkin and M. R. Wertheimer, “A new encapsulation solution for flexible organic solar cells”, Thin Solid Films, vol. 511-512, pp. 349 (2006).
 [56]M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett and M. Zumhoff,. “Organic light-emitting devices with extended operating lifetimes on plastic substrates”, Appl. Phys. Lett., vol. 81, pp. 2929 (2002).
 [57]G. L. Graff, R. E. Williford and P. E. Burrows, “Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation”, J. Appl. Phys., vol. 96, pp. 1840 (2004).
 [58]G. P. Crawford, “Flexible flat panel displays”, Wiley, pp. 60 (2005).
 [59]L.Moro, N. M. Rutherford, R. J. Visser, J.A.Hauch, C. Klepek, P. Denk, P. Schilinsky and C. J. Brabec, “Barix multilayer barrier technology for organic solar cells”, Proc. SPIE, pp. 6334 (2006).
 [60]J. Granstrom, J. S. Swensen, J. S. Moon, G. Rowell, J. Yuen and A. J. Heeger, “Encapsulation of organic light-emitting devices using a peruorinated  polymer”, Appl. Phys. Lett., vol. 93, pp. 193304 (2008).
 [61]M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, “Low-temperature Al2O3 atomic layer deposition”, Chem. Mater., vol. 16, pp. 639 (2004).
 [62]M. D. Groner, S. M. George, R. S. McLean and P. F. Carcia, “Gas diffusion barriers on polymers using Al2O3 atomic layer deposition”, Appl. Phys. Lett., vol. 88, pp. 051907 (2006).
 [63]P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner and S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers”, Appl. Phys. Lett., vol. 89, pp. 031915 (2006).
 [64]A. P. Ghosh, L. J. Gerenser, C. M. Jarman and J. E. Fornalik, “Thin-lm encapsulation of organic light-emitting devices”, Appl. Phys. Lett., vol. 86, pp. 223503 (2005).
 [65]S.-H. K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y. S. Yang and H. Y. Chu, “Ultrathin film encapsulation of an OLED by ALD”, Electrochem. Solid-State Lett. vol. 8, pp. H21 (2005).
 [66]W. J. Potscavage, S. Yoo, B. Domercq and B. Kippelen, “Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition”, Appl. Phys. Lett., vol. 90, pp. 253511 (2007).
 
 Chapter 2:
 [1]A. DeFranco, B. S. Schmidt, M. Lipson and G. G. Malliaras, “Photolithographic patterning of organic electronic materials”, Org. Electron., vol. 7, pp. 22 (2006).
 [2]J. Huang, R. Xia, Y. Kim,  X. Wang,  J. Dane, O. Hofmann, A. Mosley, A. J. de Mello, J. C. de Mello and D. D. C. Bradley, “Patterning of organic devices by interlayer lithography”, J. Mater. Chem., vol. 17, pp. 1043 (2007).
 [3]S.-C. Chang, J. Bharathan, Y. Yang, R. Helgeson, F. Wudl, M. B. Ramey and J. R. Reynolds, “Dual-color polymer light-emitting pixels processed by hybrid inkjet printing”, Appl. Phys. Lett., vol. 73, pp. 2561 (1998).
 [4]Y. Yang, S.-C. Chang, J. Bharathan and J. Liu, “Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing”, J. Mater. Sci.: Mater. Electron., vol. 11, pp. 89 (2000).
 [5]P. F. Tian, P. E. Burrows and S. R. Forrest, “Photolithographic patterning of vacuum-deposited organic light emitting devices”, Appl. Phys. Lett., vol. 71, pp. 3197 (1997).
 [6] D. G. Lidzey, M. A. Pate, M. S. Weaver, T. A. Fisher and D. D. C. Bradley, “Photoprocessed and micropatterned conjugated polymer LEDs", Synth. Met., vol. 82, pp. 141 (1996).
 [7]  U. Wolf and H. Bässler , “Enhanced electron injection into light-emitting diodes via interfacial tunneling”, Appl. Phys. Lett., vol. 74, pp. 3848 (1999).
 [8] S. T. Zhang, Y. C. Zhou, J. M. Zhao, Y. Q. Zhan, Z. J. Wang, Y. Wu, X. M. Ding and X. Y. Hou, “Role of hole playing in improving performance of organic light-emitting devices with an Al2O3 layer inserted at the cathode-organic interface”, Appl. Phys. Lett., vol. 89, pp. 043502 (2006).
 [9]  R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process”, J. Appl. Phys., vol. 97, pp. 121301 (2005).
 [10]M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, “Low-temperature Al2O3 atomic layer deposition”, Chem. Mater., vol. 16, pp. 639 (2004).
 [11]C. J. Tonzola, M. M. Alam, W. Kaminsky and S. A. Jenekhe, “New n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines”, J. Am. Chem. Soc., vol. 125, pp. 13548 (2003).
 [12]R. Yang, H. Wu, Y. Cao and G. C. Bazan, “Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion”, J. Am. Chem. Soc., vol. 128, pp. 14422 (2006).
 [13]S.-H. Jin, S.-Y. Kang, M.-Y. Kim, Y. U. Chan, J. Y. Kim, K. Lee and Y.-S. Gal, “Synthesis and electroluminescence properties of poly(9,9-di-n-octyl- fluorenyl-2,7-vinylene) derivatives for light-emitting display”, Macromolecules, vol. 36, pp. 3841 (2003).
 [14]M. M. Frank, Y. J. Chabal, M. L. Green, A. Delabie, B. Brijs, G. D. Wilk and M.-Y. Ho, “Enhanced initial growth of atomic-layer-deposited metal oxides on hydrogen-terminated silicon”, Appl. Phys. Lett., vol. 83, pp. 740 (2003).
 [15]J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello and D. D. C. Bradley, “Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4- ethylenedioxythiophene)/poly(styrene sulfonate) films”, Adv. Func. Mater., vol. 15, pp. 290 (2005).
 [16]Y. E. Kim, H. Park and J. J. Kim, “Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films,” Appl. Phys. Lett., vol. 69, pp. 599 (1996).
 [17]S. T. Zhang, Y. C. Zhou, J. M. Zhao, Y. Q. Zhan, Z. J. Wang, Y. Wu, X. M. Ding and X. Y. Hou, “Role of hole playing in improving performance of organic light-emitting devices with an Al2O3 layer inserted at the cathode-organic interface,” Appl. Phys. Lett., vol. 89, pp. 043502 (2006).
 [18]Y.-H. Niu, H. Ma, Q. Xu and A. K.-Y. Jen, “High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode,” Appl. Phys. Lett., vol. 86, pp. 083504 (2005).
 [19]X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard and X. M. Ding, “Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode,” J. Appl. Phys, vol. 95, pp. 3828 (2004).
 [20]E. Ahlswede, W. Mühleisen, M. W. Wahi, J. Hanisch and M. Powalla, “Highly effcient organic solar cells with printable low-cost transparent contacts”, Appl. Phys. Lett., vol. 92, pp. 143307 (2008).
 
 Chapter 3:
 [1]M. Jorgensen, K. Norrman and F. C. Krebs, “Stability/degradation of polymer solar cells”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 686 (2008).
 [2]K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley and J. R. Durrant, “Degradation of organic solar cells due to air exposure”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3520 (2006).
 [3]D. Gupta, M. Bag and K. S. Narayana, “Correlating reduced ll factor in polymer solar cells to contact effects”, Appl. Phys. Lett., vol. 92, pp. 093301 (2008).
 [4]B. Paci, A. Generosi, V. R. Albertini, P. Perfetti, R. de Bettignies, M. Firon, J. Leroy and C. Sentein, “In situ energy dispersive x-ray reectometry measurements on organic solar cells upon working”, Appl. Phys. Lett., vol. 87, pp. 194110 (2005).
 [5]B. Paci, A. Generosi, V.R. Albertini, P. Perfetti, R. de Bettignies, J. Leroy, M. Firon and C. Sentein, “Controlling photoinduced degradation in plastic photovoltaic cells: A time-resolved energy dispersive x-ray reectometry study”, Appl. Phys. Lett., vol. 89, pp. 043507 (2006).
 [6]K. Norrman, N. B. Larsen and F. C. Krebs, “Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2793 (2006).
 [7]M. Drees, H. Hoppe, C. Winder, H. Neugebauer, N. S. Sariciftci, W. Schwinger, F. Schaeffler, C. Topf, M.C. Scharber, Z. Zhu and R. Gaudiana, “Stabilization of the nanomorphology of polymer–fullerene bulk heterojunction blends using a novel polymerizable fullerene derivative”, J. Mater. Chem., vol. 15, pp. 5158 (2005).
 [8]C. H. Woo, B. C. Thompson, B. J. Kim, M.F. Toney and J. M. J. Fréchet, “The inuence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance”, J. Am. Chem. Soc., vol. 130, pp. 16324 (2008).
 [9]S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D’Haen, E. Goovaerts, L. Lutsen, J. Manca and D. Vanderzande,. “Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 753 (2008).
 [10]M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett and M. Zumhoff,. “Organic light-emitting devices with extended operating lifetimes on plastic substrates”, Appl. Phys. Lett., vol. 81, pp. 2929 (2002).
 [11]J. S. Lewis and M. S. Weaver, “Thin-film permeation-barrier technology for flexible organic light-emitting devices”, IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 45 (2004).
 [12]G. L. Graff, R. E. Williford and P. E. Burrows, “Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation”, J. Appl. Phys., vol. 96, pp. 1840 (2004).
 [13]J. Granstrom, J. S. Swensen, J. S. Moon, G. Rowell, J. Yuen and A. J. Heeger, “Encapsulation of organic light-emitting devices using a peruorinated  polymer”, Appl. Phys. Lett., vol. 93, pp. 193304 (2008).
 [14]M. D. Groner, S. M. George, R. S. McLean and P. F. Carcia, “Gas diffusion barriers on polymers using Al2O3 atomic layer deposition”, Appl. Phys. Lett., vol. 88, pp. 051907 (2006).
 [15]P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner and S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers”, Appl. Phys. Lett., vol. 89, pp. 031915 (2006).
 [16]A. P. Ghosh, L. J. Gerenser, C. M. Jarman and J. E. Fornalik, “Thin-lm encapsulation of organic light-emitting devices”, Appl. Phys. Lett., vol. 86, pp. 223503 (2005).
 [17]S.-H. K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y. S. Yang and H. Y. Chu, “Ultrathin film encapsulation of an OLED by ALD”, Electrochem. Solid-State Lett. vol. 8, pp. H21 (2005).
 [18]W. J. Potscavage, S. Yoo, B. Domercq and B. Kippelen, “Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition”, Appl. Phys. Lett., vol. 90, pp. 253511 (2007).
 [19]A. P. Ghosh, L. J. Gerenser, C. M. Jarman and J. E. Fornalik, “Thin-lm encapsulation of organic light-emitting devices”, Appl. Phys. Lett., vol. 86, pp. 223503 (2005).
 [20]S.-H. K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y. S. Yang and H. Y. Chu, “Ultrathin film encapsulation of an OLED by ALD”, Electrochem. Solid-State Lett. vol. 8, pp. H21 (2005).
 [21]R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process”, J. Appl. Phys., vol. 97, pp. 121301 (2005).
 [22]F.-Y. Tsai, E. L. Alfonso, D. R. Harding and S. H. Chen, “Processing vapour-deposited polyimide”, J. Phys. D: Appl. Phys., vol. 34, pp. 3011 (2001).
 [23]W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater., vol. 15, pp. 1617 (2005).
 [24]M. Reyes-Reyes, K. Kim and D. L. Carroll, “High-efciency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-(methoxycarbonyl)- propyl-1-phenyl-(6,6)C61 blends”, Appl. Phys. Lett., vol. 87, pp. 083506 (2005).
 [25]K. Inoue, R. Ulbricht, P. C. Madakasira, W. M. Sampson, S. Lee, J. Gutierrez, J. P. Ferraris and A. A. Zakhidov, “Temperature and time dependence of heat treatment of RR-P3HT/PCBM solar cell”, Synth. Met., vol. 154, pp. 41 (2005).
 [26]B. Paci, A. Generosi, V.R. Albertini, R. Generosi, P. Perfetti, R. de Bettignies and C. Sentein, “Time-resolved morphological study of bulk heterojunction films for efficient organic solar devices”, J. Phys. Chem. C, vol. 112, pp. 9931 (2008).
 [27]B. Paci, A. Generosi, V.R. Albertini, P. Perfetti, R. de Bettignies, C. Sentein, “Photo-degradation and stabilization effects in operating organic photovoltaic devices by joint photo-current and morphological monitoring”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 799 (2008).
 [28]C. W. T. Bulle-Lieuwma, W. J. H. van Gennip, J. K. J. van Duren, P. Jonkheijm, R. A. J. Janssen and J. W. Niemantsverdriet, “Characterization of polymer solar cells by TOF-SIMS depth profiling”, Appl. Surf. Sci., vol. 203, pp. 547 (2003).
 [29]M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumbles, and D. S. Ginley, “Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 746 (2008).
 [30]F. C. Krebs, “Encapsulation of polymer photovoltaic prototypes”, Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3633 (2006).
 [31]C. A. Wilson, R. K. Grubbs and S. M. George, “Nucleation and growth during Al2O3 atomic layer deposition on polymers”, Chem. Mater., vol. 17, pp. 5625 (2005).
 [32]B. C. Bunker, G. C. Nelson, K.R. Zavadil, J. C. Barbour, F. D. Wall, J. P. Sullivan, C. F. Windisch, M. H. Engelhardt and D.R. Baer, “Hydration of passive oxide films on aluminum”, J. Phys. Chem. B, vol. 106, pp. 4705 (2002).
 [33]J. R. Scott, G.S. Groenewold, A. K. Gianotto and M. T. Benson, “Experimental and computational study of hydration reactions of aluminum oxide anion clusters”, J. Phys. Chem. A, vol. 104, pp. 7079 (2000).
 [34]T. Nishide, S. Honda, M. Matsuda and M. Ide, “Surface, structural and optical properties of sol-gel derived HfO2 lms”, Thin Solid Films, vol. 371, pp. 61 (2000).
 [35]S. J. Ding, D. W. Zhang and L.-K. Wang, “Atomic-layer-deposited Al2O3-HfO2 laminated and sandwiched dielectrics for metal–insulator–metal capacitors”, J. Phys. D: Appl. Phys., vol. 40, pp. 1072 (2007).
 [36]M. S. Joo, B. J. Cho, C. C. Yeo, D. S. Chan, S. J. Whoang, S. Mathew, L. K. Bera, N. Balasubramanian and D. L. Kwong, “Formation of hafnium– aluminum–oxide gate dielectric using single cocktail liquid source in MOCVD process”, IEEE Trans. Electron Devices, vol. 50, pp. 2088 (2003).
 [37]E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. van de Sanden and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers”, Appl. Phys. Lett., vol. 89, pp. 081915 (2006).
 
 Chapter 4:
 [1]M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution- derived ZnO underlayer”, Appl. Phys. Lett., vol. 89, pp. 143517 (2006).
 [2]B. Zimmermann, U. Würfel and M. Niggemann, Sol. Energy Mater. Sol. Cells, “Longterm stability of efficient inverted P3HT:PCBM solar cells”, vol. 93, pp. 491 (2009).
 [3]A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer”, Appl. Phys. Lett., vol. 93, pp. 221107 (2008).
 [4]J. S. Lewis and M. S. Weaver, “Thin-film permeation-barrier technology for flexible organic light-emitting devices”, IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 45 (2004).
 [5]G. L. Graff, R. E. Williford and P. E. Burrows, “Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation”, J. Appl. Phys., vol. 96, pp. 1840 (2004).
 [6]M. D. Groner, S. M. George, R. S. McLean and P. F. Carcia, “Gas diffusion barriers on polymers using Al2O3 atomic layer deposition”, Appl. Phys. Lett., vol. 88, pp. 051907 (2006).
 [7]C.-Y. Chang, F.-Y. Tsai, S.-J. Jhuo and M.-J. Chen, “Enhanced OLED performance upon photolithographic patterning by using an atomic-layer- deposited buffer layer”, Org. Elec., vol. 9, pp. 667 (2008).
 [8]M.-Y. Tsai and J.-C. Lin, “Preconditioning gold substrates influences organothiol self-assembled monolayer (SAM) formation”, J. Colloid Interface Sci., vol. 238, pp.259 (2001).
 [9]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self- organization of polymer blends”, Nat. Mater., vol. 4, pp. 864 (2005).
 [10]M. D. Groner, S. M. George, R. S. McLean and P. F. Carcia, “Gas diffusion barriers on polymers using Al2O3 atomic layer deposition”, Appl. Phys. Lett., vol. 88, pp. 051907 (2006).
 [11]A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche and M. R. Wertheimer, “Defect-permeation correlation for ultrathin transparent barrier coatings on polymers”, J. Vac. Sci. Technol. A, vol. 18, pp. 149 (2000).
 [12]N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski and V. Osinniy, “Longterm stability of efficient inverted P3HT:PCBM solar cells”, Appl. Phys. Lett., vol. 92, pp. 023502 (2008).
 [13]R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process”, J. Appl. Phys., vol. 97, pp. 121301 (2005).
 [14]T. Ameri, G. Dennler, C. Waldauf, P. Denk, K. Forberich, M. C. Scharber, C. J. Brabec and K. Hingerl, “Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells”, J. Appl. Phys., vol. 103, pp. 084506 (2008).
 [15]D. C. Olson, S. E. Shaheen, R. T. Collins and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices”, J. Phys. Chem. C, vol. 111, pp. 16670 (2007).
 [16]C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer”, Appl. Phys. Lett., vol. 94, pp. 113302 (2009).
 [17]M. S. A. Abdou and S. Holdcroft, “Mechanisms of photodegradation of poly(3-alkylthiophenes) in solution”, Macromolecules, vol. 26, pp. 2954 (1993).
 [18]Z. Liang, A. Nardes, D. Wang, J. J. Berry and B. A. Gregg, “Defect Engineering in π-Conjugated Polymers”, Chem. Mater., vol. 21, pp. 4914 (2009).
 [19]M. Jørgensen, K. Norrman and F.C. Krebs, “Stability/degradation of polymer solar cells”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 686 (2008).
 [20]S. Chambon, A. Rivaton, J.-L. Gardette and M. Firon, “Photo- and thermal degradation of MDMO-PPV:PCBM blends”, Sol. Energy Mater. Sol. Cells, vol. 91, pp. 394 (2007).
 [21]X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. Denier Vander Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. Deschryver and W. R. Salaneck, “Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study”, J. Polym. Sci. B:Polym. Phys., vol. 41, pp. 2561 (2003).
 [22]M. Kuş and S. Okur, “Electrical characterization of PEDOT:PSS beyond humidity saturation”, Sens. Actuators B, vol. 143, pp. 177 (2009).
 [23]T. J. Savenije, J. E. Kroeze, X.Yang and J. Loos, “The formation of crystalline P3HT fibrils upon annealing of a PCBM:P3HT bulk heterojunction”, Thin Solid Films, vol. 511–512, pp. 2 (2006).
 
 |