跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.89) 您好!臺灣時間:2025/11/30 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊文南
研究生(外文):Wen-Nan Chuang
論文名稱:集水區都市化對降雨-逕流模式參數之影響
論文名稱(外文):Effects of watershed urbanization on rainfall-runoff model parameters
指導教授:陳榮松陳榮松引用關係
口試委員:陳昶憲王傳益陳肇成游進裕
口試日期:2017-01-09
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:117
中文關鍵詞:都市化變數區塊克利金法半分布平行串聯(並聯)線性水庫
外文關鍵詞:Urbanization variablesBlock KrigingSemi-distributed model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從人類開始定居在地球上,人類便開始群聚在特定的區域內,人對於生活及環境的需求在人口稠密的地區產生大量的不透水表面,這類不透水的地方包括學校、鐵路、街道、屋頂、停車場、購物商場、水路、高速公路與商業及工業建築。這些不同的都市化程度會對集水區上下游產生不同程度的影響。
集水區都市化對降雨-逕流模式參數之影響研究是以半分布平行串聯(並聯)線性水庫評估不同都市化變數對集水區水文之的影響。
本研究所使用之方法不需要詳細的水文資料,區塊克利金法用來估計集水區及其分區之平均降雨,降雨損失是假設空間均勻Φ指數值,即是分區的平均降雨個別輸入到半分布並聯線性水庫模式中,逕流體積誤差(VER)標準的結果顯示原則上的體積平衡並不受空間均勻損失分布的假設所影響,取決於模擬體積是否與觀測相近,其他三個評估標準(CE, EQp 及 ETp)也反應集水區出口水文歷線的模擬有助於分區代表參數的獲得。四個評估標準的驗證結果確認漫地流貯蓄Ko與不透水率(Im)之間的冪次關係適當的反應集水區分區中都市化程度的改變。
透過64個檢定事件與46個驗證事件,成功的評估集水區分區都市化變數對模式參數的影響,證明集水區分區中都市化變數及參數的相關聯性。
由最佳區間法所獲得的分區參數的改變,反應出分區中不同程度的都市化變數,研究結果顯示相較於人口改變,不透水率(Im)在影響模式參數上更具影響性。
不透水率(Im)的改變對於Ko參數有明顯影響,而Kc參數則與都市化過程無關,基於這兩個發現,Ko參數的平均值與不透水率(Im)的百分比有關,冪次連結提供的一個連接分區參數及其相應的不透水率(Im)連續關係的方法。
基於觀測的不透水率(Im)資料,這些由冪次方程式所計算的值代表個集水區分區漫地流貯蓄參數Ko,集水區分區的水文特徵改變代表分區不同的都市化程度。
建立Ko與不透水率(Im)之冪次關係式,未來只需對於集水區之不透水率(Im)與降雨資料,就可成功準確計算其流量。
This study used a semi-distributed model with a parallel connection to examine the effects of urbanization variables. Data were obtained from watershed divisions displaying varying degrees of urbanization. The mean rainfall was calculated using the Kriging method. The model inputs, effective rainfall across the divisions, were obtained by subtracting mean rainfall from identical Φ-index values, based on the spatial-uniform loss assumption. Regression analysis determined the relationship between the parameters of 64 calibrations and urbanization variables among the divisions. The results showed that overland parameters displayed more consistent change in response to the imperviousness compared to the population. By contrast, the channel parameter was unaffected by change in urbanization. The verification results showed that power linkage was an available selection for linking division parameters with the corresponding imperviousness based on 46 cases using four evaluation criteria. The changes in imperviousness on overland parameters illustrated the hydrological effects of division urbanizations.
摘 要 i
Abstract iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究動機與目的 4
1.2 研究方法 6
第二章 文獻回顧 7
第三章 研究理論及方法 15
3.1 逕流量推估理論 15
3.2 區塊克利金法(Block Kriging technology) 23
3.3 有效降雨與其之計算 26
3.4 逕流模擬之評估標準 27
第四章 降雨-逕流模式之建立 28
4.1 研究集水區 28
4.2半分布平行串聯(並聯)線性水庫模式 32
第五章 研究案例之驗證與討論 35
第六章 結論與建議 63
參考文獻 65
附錄一 70
附錄二 87
附錄三 111
1.王如意、易任,1992,「應用水文學(上、下冊)」,臺北:茂昌圖書,pp.458-468,pp.51-52。
2.Agirre, U., Goñi, M., López, J. J. & Gimena, F.N. (2005) Application of a unit hydrograph based on subwatershed division and comparison with Nash’s instantaneous unit hydrograph. Catena 64, 321-332.
3.Ahmad, M. M., Ghumman, A. R., Ahmad, S. (2009) Estimation of Clark’s instantaneous unit hydrograph parameters and development of direct surface runoff hydrograph. Water Resources Management 23, 2417-2435.
4.Arnell, V. (1982) Estimating runoff volumes from urban areas. Water Resources Bulletin 18(3), 383–387.
5.Aronica, G. & Cannarozzo, M. (2000) Studing the hydrological response of urban catchments using a semi-distributed linear non-linear model. Journal of Hydrology 238, 35–43.
6.Basistha, A., Arya, D. S. & Goel, N. K. (2008) Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region. Water Resources Management 22, 1325-1346.
7.Bastin, G., Lorent, B., Duque, C. & Gevers, M. (1984) Optimal estimation of the average rainfall and optimal selection of raingauge locations. Water Resources Research 20, 463-470.
8.Bhadra, A., Bandyopadhyay, A., Singh, R. & Raghuwanshi, N. S. (2010) Rainfall-Runoff Modeling: Comparison of Two Approaches with Different Data Requirements. Water Resources Management 24, 37-62.
9.Bonta, J. V., Amerman, C. R., Harlukowicz, T. J. & Dick, W. A. (1997) Impact of coal surface mining on three Ohio Watersheds-surface-water hydrology. Journal of The American Water Resources Association 33, 907-917.
10.Boyd, M. J., Bufill, M. C., & Knee, R. M. (1994) Predicting pervious and impervious storm runoff from urban basins. Hydrological Science Journal 39, 321-332.
11.Chen, R. S., Pi, L. C. & Huang, Y. H. (2003) Analysis of rainfall-runoff relation in paddy fields by diffusive tank model. Hydrological Processes 17, 2541-2553.
12.Cheng, C. D., Cheng, S. J., Wen, J. C. & Lee, J. H. (2012) Effects of raingauge distribution on estimation accuracy of areal rainfall. Water Resources Management, 26, 1-20.
13.Cheng, K. S., Lin, Y. C. & Liou, J. J. (2008a) Rain-gauge network evaluation and augmentation using geostatistics. Hydrological Processes 22, 2554-2564.
14.Cheng, S. J. & Wang, R. Y. (2002) An approach for evaluating the hydrological effects of urbanization and its application. Hydrological Processes 16, 1403-1418.
15.Cheng, S. J. (2010a) Generation of runoff components based on serial exponential reservoirs. Water Resources Management 24, 3561-3590.
16.Cheng, S. J. (2010b) Hydrograph characteristics of quick and slow runoffs of a watershed outlet, Taiwan. Hydrological Processes 24, 2851-2870.
17.Cheng, S. J. (2010c) Inferring Hydrograph Components from Rainfall and Streamflow Records Using a Kriging Method-Based Linear Cascade Reservoir Model. Journal of the American Water Resources Association 46, 1171-1191.
18.Cheng, S. J. (2011a) Raingauge significance evaluation based on mean hyetographs. Natural Hazards, 56(3), 767-784.
19.Cheng, S. J. (2011b) The best relationship between lumped parameters and urbanized factors. Natural Hazards, 56(3), 853-867.
20.Cheng, S. J., Hsieh, H. H. & Wang, Y. M. (2007) Geostatistical interpolation of space-time rainfall on Tamshui River Basin, Taiwan. Hydrological Processes 21, 3136-3145.
21.Cheng, S. J., Hsieh, H. H., Lee, C. F. & Wang, Y. M. (2008b) The storage potential of different surface coverings for various scale storms on Wu-Tu watershed, Taiwan. Natural Hazards 44, 129-146.
22.Cheng, S. J., Lee, C. F. & Lee, J. H. (2010) Effects of urbanization factors on model parameters. Water Resources Management 24, 775-794.
23.Clarke, R. T. (1973) A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19, 1-20.
24.Dooge, J. C. I. (1959) A general theory of the unit hydrograph. Journal of Geophysical Research 64, 241-256.
25.Duan, Q., Gupta, V. K. & Sorooshian, S. (1993) Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory Application 76, 501-521.
26.Franchini, M. & O’Connell, P. E. (1996) An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph. Journal of Hydrology 175, 407-428.
27.Goovaerts, P. (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228, 113-129.
28.Gremillion, P., Gonyeau, A. & Wanielista, M. (2000) Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes 14, 1485-1501.
29.Hsieh, L. S. & Wang, R. Y. (1999) A semi-distributed parallel-type linear reservoir rainfall-runoff model and its application in Taiwan. Hydrological Processes 13, 1247-1268.
30.Huang, H. J., Cheng, S. J., Wen, J. C. & Lee, J. H. (2008a) Effect of growing watershed imperviousness on hydrograph parameters and peak discharge. Hydrological Processes 22, 2075-2085.
31.Huang, S. Y., Cheng, S. J., Wen, J. C. & Lee, J. H. (2008b) Identifying peak-imperviousness-recurrence relationships on a growing-impervious watershed, Taiwan. Journal of hydrology 362, 320-336.
32.Huang, S. Y., Cheng, S. J., Wen, J. C. & Lee, J. H. (2012) Identifying hydrograph parameters and their relations to urbanization variables. Hydrological Sciences Journal 57(1), 144-161.
33.Jakeman, A. J. & Hornberger, G. M. (1993) How much complexity is warranted in a rainfall-runoff model? Water Resources Research 29, 2637-2649.
34.Jakeman, A. J., Littlewood, I. G. & Whitehead, P. G. (1990) Computation of the instantaneous unit hydrograph and identifiable component flows with application to two upland catchments. Journal of Hydrology 117, 275-300.
35.Jin, C. X. (1992) A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types. Water Resources Research 28, 479-486.
36.Junil, P., Kang, I. S. & Singh, V. P. (1999) Comparison of simple runoff models used in Korea for small watersheds. Hydrological Processes 13, 1527-1540.
37.Kang, I. S., Park, J. I. & Singh, V. P. (1998) Effect of urbanization on runoff characteristics of the On-Cheon Stream Watershed in Pusan, Korea. Hydrological Processes 12, 351-363.
38.Kliment, Z. & Matoušková, M. (2009) Runoff changes in the Šumava Mountains (Black Forest) and the Foothill Regions: extent of influence by human impact and climate Change. Water Resources Management 23, 1813-1834.
39.Krug, W. R. (1996) Simulation of temporal changes in rainfall-runoff characteristics, Coon Creek Basin, Wisconsin. Water Resources Bulletin 32(4), 745-752.
40.Lebel, T. & Bastin, G. (1985) Variogram identification by the mean squared interpolation error method with application to hydrologic field. Journal of Hydrology 77, 31-56.
41.Lee, Y. H. & Singh, V. P. (2005) Tank model for sediment yield. Water Resources Management 19, 349-362.
42.Li, Y. J., Cheng, S. J., Pao, T. L. & Bi, Y. J. (2012) Relating hydrograph components to rainfall and streamflow: a case study from northern Taiwan. Hydrological Sciences Journal, doi: 10.1080/02626667.2012.685171.
43.Liu, A., Goonetilleke, A. & Egodawatta, P. (2012) Inadequacy of land use and impervious area fraction for determining urban stormwater quality. Water Resources Management 26, 2259-2265.
44.Melone, F., Corradini, C. & Singh, V. P. (1998) Simulation of the direct runoff hydrograph at basin outlet. Hydrological Processes 12, 769-779.
45.Moramarco, T., Melone, F. & Singh, V. P. (2005) Assessment of flooding in urbanized ungauged basins: a case study in the upper Tiber area, Italy. Hydrological Processes 19, 1909-1924.
46.Nash, J. E. & Sutcliffe, J. V. (1970) River flow forecasting through conceptual models: 1. a discussion of principles. Journal of Hydrology 10, 282-290.
47.Nash, J. E. (1957) The form of the instantaneous unit hydrograph. IAHS Publications 45, 112-121.
48.Nayak, P. C., Sudheer, K. P. & Ramasastri, K. S. (2005) Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes 19, 955-968.
49.Nourani, V., Singh, V. P. & Delafrouz, H. (2009) Three geomorphological rainfall-runoff models based on the linear reservoir concept. Catena 76, 206-214.
50.O’Connell, P. E. & Todini, E. (1996) Modelling of rainfall, flow and mass transport in hydrological systems: an overview. Journal of Hydrology 175, 3-16.
51.Olivera, F. & DeFee, B. B. (2007) Urbanization and its effect on runoff in the Whiteoak Bayou watershed, Texas. Journal of The American Water Resources Association 43, 170-182.
52.Rodriguez, F., Andrieu, H. & Creutin, J. D. (2003) Creutin Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks. Journal of Hydrology 283, 146-168.
53.Simmons, D. L. & Reynolds, R. J. (1982) Effects of urbanization on base Flow of selected South-Shore Streams, Long Island, New York. Water Resources Bulletin 18, 797-805.
54.Singh, R. B. (1998) Land use/cover changes, extreme events and ecohydrological response in the Himalayan Region. Hydrological Processes 12, 2043-2055.
55.Sugawara, M (1979) Automatic calibration of the tank model. Hydrological Science Bulletin 24, 375-388.
56.Sugawara, M. (1995) ‘Tank model’, in Singh, V. P. (ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Littleton, Colorado.
57.Syed, K. H., Goodrich, D. C., Myers, D. E. & Sorooshian, S. (2003) Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. Journal of Hydrology 271, 1-21.
58.Xie, H., Zhang, X., Yu, B. & Sharif, H. (2011) Performance evaluation of interpolation methods for incorporating rain gauge measurements into NEXRAD precipitation data: a case study in the Upper Guadalupe River Basin. Hydrological Processes 25, 3711-3720.
59.Yue, S. & Hashino, M. (2000) Unit hydrographs to model quick and slow runoff components of streamflow. Journal of Hydrology 227, 195-206.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top