跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.180) 您好!臺灣時間:2025/11/30 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李易撰
研究生(外文):Yi-Juan Lee
論文名稱:幽門螺旋桿菌單股DNA結合蛋白質與單股DNA結合模式研究
論文名稱(外文):The ssDNA Binding Mode of Single-stranded DNA binding Protein from Helicobacter pylori
指導教授:孫玉珠
指導教授(外文):Yuh-Ju Sun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:43
中文關鍵詞:單股DNA結合蛋白質
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單股DNA結合蛋白質(SSB)在DNA之代謝中,包括複製、修復及重組的過程中扮演重要的角色。SSB之N端區域形成一種寡醣核苷酸結合區使之能與DNA結合,而C端是一段具有高度保留特性的酸性胺基酸序列,其重要性為與其他參與DNA代謝的蛋白質作用。為了解單股DNA與SSB在溶液中的結合情形,我們利用螢光滴定法與凝膠阻滯分析法觀察其複合物的形成,其結合方式為一個SSB(其在生理環境下作用為四聚體)與25到30個核苷酸結合。本實驗室利用X光晶體繞射實驗決定C端去尾之胃幽門螺旋桿菌SSB (HpSSBc)之結構,所得的晶體最高解析度達2.3 Å。在晶體中顯示出兩條單股聚核苷酸(長度各為35個胸腺嘧啶核苷酸)與一個SSB四聚體結合。單股DNA藉由靜電力與疏水性堆疊作用力與HpSSBc纏繞。HpSSBc四聚體在水溶液中以30個核苷酸之結合模式作用,而我們在晶體中則觀察到65個核苷酸之結合模式。這兩種不同的結合模式可能分別作用在DNA複製、修復及重組的過程中。
Contents
中文摘要
Abstract
Contents
Chapter 1 Introduction
1.1 Helicobacter pylori
1.2 Single-stranded DNA binding protein (SSB)
1.3 The binding modes of SSB
1.4 The C-terminal sequence of SSB
1.5 The association proteins of SSB
1.6 The characteristics of other SSBs
Chapter 2 Material and methods
2.1 Cloning , protein expression and purification
2.2 Analytical ultracentrifugation
2.3 Analytical gel filtration chromatography
2.4 Fluorescence titration
2.5 Gel shift assay
Chapter 3 Results
3.1 Protein purification and identification
3.1.1 HpSSB
3.1.2 C-terminal truncated HpSSB (HpSSBc)
3.2 HpSSB and HpSSBc binding mode determination
3.3 Overall structure of HpSSBc
Chapter 4 Discussion
4.1 Comparison of ssDNA binding site size between full-length HpSSB and HpSSBc
4.2 The binding mode of HpSSBc
4.3 Comparison of ssDNA binding mode between SSBs
Appendix Figures and Tables
References
1. Danesh, J. (1999). Helicobacter pylori and gastric cancer: time for mega-trials? Br. J. Cancer 80, 927-9.
2. Scheiman, J. M. & Cutler, A. F. (1999). Helicobacter pylori and gastric cancer. Am. J. Med. 106, 222-6.
3. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-47.
4. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328-33.
5. Lacy, B. E. & Rosemore, J. (2001). Helicobacter pylori: ulcers and more: the beginning of an era. J. Nutr. 131, 2789S-2793S.
6. Kinebuchi, T., Shindo, H., Nagai, H., Shimamoto, N. & Shimizu, M. (1997). Functional domains of Escherichia coli single-stranded DNA binding protein as assessed by analyses of the deletion mutants. Biochemistry 36, 6732-8.
7. Arcus, V. (2002). OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr. Opin. Struct. Biol. 12, 794-801.
8. Venclovas, C., Ginalski, K. & Kang, C. (2004). Sequence-structure mapping errors in the PDB: OB-fold domains. Protein Sci. 13, 1594-602.
9. Genschel, J., Curth, U. & Urbanke, C. (2000). Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol. Chem. 381, 183-92.
10. Handa, P., Acharya, N. & Varshney, U. (2001). Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J. Biol. Chem. 276, 16992-7.
11. Reddy, M. S., Guhan, N. & Muniyappa, K. (2001). Characterization of single-stranded DNA-binding proteins from Mycobacteria. The carboxyl-terminal of domain of SSB is essential for stable association with its cognate RecA protein. J. Biol. Chem. 276, 45959-68.
12. Dabrowski, S., Olszewski, M., Piatek, R., Brillowska-Dabrowska, A., Konopa, G. & Kur, J. (2002). Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus - new arrangement of binding domains. Microbiology 148, 3307-15.
13. Eggington, J. M., Haruta, N., Wood, E. A. & Cox, M. M. (2004). The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 4, 2.
14. Witte, G., Urbanke, C. & Curth, U. (2005). Single-stranded DNA-binding protein of Deinococcus radiodurans: a biophysical characterization. Nucleic Acids Res. 33, 1662-70.
15. Bernstein, D. A., Eggington, J. M., Killoran, M. P., Misic, A. M., Cox, M. M. & Keck, J. L. (2004). Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc. Natl. Acad. Sci. U.S.A. 101, 8575-80.
16. Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7, 648-52.
17. Lohman, T. M. & Overman, L. B. (1985). Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J. Biol. Chem. 260, 3594-603.
18. Bujalowski, W. & Lohman, T. M. (1986). Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25, 7799-802.
19. Lohman, T. M., Overman, L. B. & Datta, S. (1986). Salt-dependent changes in the DNA binding co-operativity of Escherichia coli single strand binding protein. J Mol Biol 187, 603-615.
20. Savvides, S. N., Raghunathan, S., Futterer, K., Kozlov, A. G., Lohman, T. M. & Waksman, G. (2004). The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci. 13, 1942-7.
21. Shamoo, Y., Friedman, A. M., Parsons, M. R., Konigsberg, W. H. & Steitz, T. A. (1995). Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376, 362-366.
22. Cadman, C. J. & McGlynn, P. (2004). PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 32, 6378-87.
23. Han, E. S., Cooper, D. L., Persky, N. S., Sutera, V. A., Jr., Whitaker, R. D., Montello, M. L. & Lovett, S. T. (2006). RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res. 34, 1084-91.
24. Kantake, N., Madiraju, M. V., Sugiyama, T. & Kowalczykowski, S. C. (2002). Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc. Natl. Acad. Sci. U.S.A. 99, 15327-32.
25. Hegde, S. P., Qin, M. H., Li, X. H., Atkinson, M. A., Clark, A. J., Rajagopalan, M. & Madiraju, M. V. (1996). Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc. Natl. Acad. Sci. U.S.A. 93, 14468-73.
26. Acharya, N. & Varshney, U. (2002). Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J. Mol. Biol. 318, 1251-64.
27. Richard, D. J., Bell, S. D. & White, M. F. (2004). Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res. 32, 1065-74.
28. Witte, G., Urbanke, C. & Curth, U. (2003). DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res. 31, 4434-40.
29. Gulbis, J. M., Kazmirski, S. L., Finkelstein, J., Kelman, Z., O'Donnell, M. & Kuriyan, J. (2004). Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur. J. Biochem. 271, 439-49.
30. Bochkarev, A. & Bochkareva, E. (2004). From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr. Opin. Struct. Biol. 14, 36-42.
31. Brill, S. J. & Stillman, B. (1991). Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev. 5, 1589-600.
32. Matsumoto, T., Morimoto, Y., Shibata, N., Kinebuchi, T., Shimamoto, N., Tsukihara, T. & Yasuoka, N. (2000). Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by X-Ray structure analysis. J. Biochem. 127, 329-35.
33. Kerr, I. D., Wadsworth, R. I., Cubeddu, L., Blankenfeldt, W., Naismith, J. H. & White, M. F. (2003). Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J. 22, 2561-70.
34. Saikrishnan, K., Jeyakanthan, J., Venkatesh, J., Acharya, N., Sekar, K., Varshney, U. & Vijayan, M. (2003). Structure of Mycobacterium tuberculosis single-stranded DNA-binding protein. Variability in quaternary structure and its implications. J. Mol. Biol. 331, 385-93.
35. Bochkareva, E., Belegu, V., Korolev, S. & Bochkarev, A. (2001). Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J. 20, 612-8.
36. Bochkarev, A., Bochkareva, E., Frappier, L. & Edwards, A. M. (1999). The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498-504.
37. Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176-81.
38. Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606-19.
39. Schwarz, G. & Watanabe, F. (1983). Thermodynamics and kinetics of co-operative protein-nucleic acid binding : I. General aspects of analysis of data. J Mol Biol 163, 467-484.
40. Wadsworth, R. I. M. & White, M. F. (2001). Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucl. Acids Res. 29, 914-920.
41. Otwinowski, Z., Minor, W. & Charles W. Carter, Jr. (1997). Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307-326.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top