跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭詠秦
研究生(外文):Yung-Chin Hsiao
論文名稱:靛花青與射頻光動力系統抑制褥瘡傷口分離菌之探討
論文名稱(外文):Studies of Indocyanine Green and Radio Frequency Photodynamic System to Inactivate Bacteria Isolated From Bedsore Wound
指導教授:婁世亮
指導教授(外文):Shyh-Liang Lou
學位類別:碩士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:73
中文關鍵詞:無線射頻靛花青光動力治療褥瘡
外文關鍵詞:radio frequencyindocyanine greenphotodynamic therapybedsores
相關次數:
  • 被引用被引用:1
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
褥瘡(bedsore)是由於局部組織在骨頭突出處受長期壓迫所造成的缺血壞死,經常發生於長期臥床之病人,嚴重時甚至致死,而傷口感染及細菌抗藥性的發生,促使褥瘡治療之困難提昇,本研究提出運用射頻(radio frequency, RF)光動力系統抑制傷口分離菌之構想,最終發展成可應用於臨床傷口之無線射頻驅動光源系統,藉由穩定的光源能量輸出,提昇患者治療之便利性與穩定性。應用光動力療法(photodynamic therapy, PDT)誘發褥瘡常見之感染菌株死亡,由於殺菌作用機轉與傳統抗生素治療相異,降低患者抗藥性產生。針對褥瘡患者常見之兩種細菌-oxacillin-resistant Staphylococcus aureus (ORSA)、oxacillin-susceptible Staphylococcus aureus (OSSA),於體外試驗使用光感藥物靛花青 (indocyanine green, ICG) 進行光動力抑菌試驗。本研究之光源系統可穩定輸出20 mW/cm2之光功率。由光譜儀驗證LED發光波長為770±5 nm,符合於光感藥物ICG之吸收峰。光動力滅菌實驗結果顯示,本研究開發之射頻光動力系統確實抑制褥瘡傷口常見之感染菌株生長,可達98 %以上之抑菌效果,且不同細菌對 ICG-PDT 之感受度即有差異,臨床上採用ICG-PDT治療細菌感染前,須先試驗各個菌株對ICG-PDT之感受性,找出最適當之感光劑濃度及光劑量,方能將光動力療法之殺菌能力發揮至最大。總括來說,本研究所製作之無線射頻光源系統在傷口分離菌上確有滅菌之成效,具有褥瘡傷口臨床應用之潛能。
Bedsore is usually developed in bedridden patients due to tissue ischemic necrosis after persistent unrelieved pressure over bony prominences. It can be fatal to elderly and disabled patients. Bedsore is difficult to treat due to wound infection and the development of drug resistant bacteria. This study proposed the radio-frequency (RF)-mediated photodynamic therapy (PDT) to inactivate bacteria isolated from the wound. The RF lighting system may have potential for clinical practices. The bacteria killing mechanism of PDT is different from antibiotics and thus can reduce the opportunity of drug resistance. We used two bacterial strains which are common pathogens on bedsores: oxacillin-resistant Staphylococcus aureus (ORSA) and oxacillin-susceptible Staphylococcus aureus (OSSA). Indocyanine green (ICG) was used as photosensitizer. The system consists of LED light source which emits 770±5 nm wavelength of light; the absorption peak of ICG was confirmed with a spectroscope. The irradiance was 20 mW/cm2.
The results showed that the RF lighting system can effectively reduce the growth of common bacteria on bedsores by 98%. The antibacterial effects were different in various strains. A specific photosensitizer concentration was required for optimal effects. The results suggest that the optimal combination of ICG concentration and light power should be examined before ICG-PDT treatments. In conclusion, the RF lighting system has potential to inactivate bacterial infections of bedsores in future clinical application.
摘要 I
Abstract II
謝誌 III
目錄 IV
圖索引 VII
表索引 IX
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1 光動力治療之應用 4
1.2.2 無線射頻傳輸 6
1.3 研究動機與目的 6
1.4 論文架構 8
第二章 基礎理論 9
2.1 光動力療法 9
2.2 發光二極體 12
2.2.1 發光二極體應用於輔助型醫療設備 12
2.2.2 發光二極體之熱效應 13
2.3 射頻電源傳輸系統 14
2.3.1 E類功率放大器 14
2.3.2 線圈電源耦合之原理 15
2.4 褥瘡 17
第三章 研究方法與材料 18
3.2 光動力治療系統設計概念 19
3.3 外部功率放大器設計與製作 19
3.4 內部植入端光照器設計與製作 21
3.4.2 無線單光源系統 22
3.4.3 無線陣列光源系統 22
3.5 LED光波長驗證 24
3.6 系統驗證 24
3.6.1 無線傳輸距離探討 24
3.6.2 光功率穩定測試 26
3.6.3 溫度測試 27
3.7 抑菌實驗 29
3.7.1 光感藥劑 29
3.7.2 菌種介紹 30
3.7.3 光動力抑菌實驗 31
3.7.4 統計分析 31
第四章 結果與討論 32
4.1 射頻光動力系統工作參數 32
4.1.1 E類功率放大器電源傳輸系統 32
4.1.2 頻傳輸距離探討 34
4.2 LED光波長驗證 36
4.3 系統光源光功率穩定度測試 37
4.3.1 無線單光源系統光功率量測 37
4.3.2 無線陣列光源系統光功率量測 37
4.4 系統光源溫度測試 39
4.4.1 無線單光源系統溫度量測 39
4.4.2 無線陣列光源系統溫度量測 39
4.4.3 菌液溫度量測 41
4.4.4 無線光動力系統之討論 42
4.5 滅菌實驗 44
4.5.1 光照100 J/cm2組滅菌實驗 45
4.5.2 光照50 J/cm2組滅菌實驗 47
4.5.3 光照25 J/cm2組滅菌實驗 49
4.5.4 滅菌實驗之討論 51
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 54
參考文獻 56
附錄A 實驗試劑、材料與使用儀器 62
1 實驗試劑 62
2 實驗耗材 62
3 使用儀器 63
附錄B 實驗藥物配製 64


圖索引
圖2-1 光動力治療與光動力診斷之機制示意 10
圖2-2 E類功率放大器電路 15
圖2-3 電源傳輸系統示意圖 15
圖3-1 研究架構 18
圖3-2 光動力治療示意圖 19
圖3-3 E類射頻放大器系統電路圖 20
圖3-4 植入端光照器系統方塊圖 21
圖3-5 無線單光源系統 23
圖3-6 無線陣列光源系統 23
圖3-7 多軸定位控制器實照圖 25
圖3-8 功率傳輸垂直距離量測實驗示意圖 25
圖3-9 功率傳輸水平距離量測實驗示意圖 26
圖3-10光功率量測實驗示意圖 27
圖3-11 光源溫度量測實驗示意圖 28
圖3-12 菌液溫度量測實驗示意圖 28
圖4-1 Class E功率放大器量測波形 33
圖4-2 垂直位移光功率變化 35
圖4-3 水平位移光功率變化 35
圖4-4 光源波長分析圖 36
圖4-5 無線單光源系統光功率穩定測量 38
圖4-6 無線陣列光源系統光功率穩定測量 38
圖4-7 無線單光源系統穩定測量 40
圖4-8 無線陣列光源系統溫度穩定測量 40
圖4-9 菌液溫度測量 41
圖4-10 殺菌實驗流程圖 44
圖4-11 光照100J組菌量 46
圖4-12 光照100J滅菌效果 46
圖4-13 光照50J組菌量 48
圖4-14 光照50J滅菌效果 48
圖4-15 光照25J組菌量 50
圖4-16 光照25J滅菌效果 50


表索引

表一 褥瘡分級 17
表二 Class E功率放大器量測結果 33
[1] Reger, S.I., V.K. Ranganathan, V. Sahgal, Support surface interface pressure, microenvironment, and theprevalence of pressure ulcers: an analysis of the literature. Ostomy Wound Manage, 53(10): 50-8 ,2007.
[2] Singer, A.J.,R.A. Clark, Cutaneous wound healing. N Engl J Med, 341(10): 738-46,1999.
[3] Baharestani, M.M., J.M. Black, K. Carville, M. Clark, J.E. Cuddigan, C. Dealey, T. Defloor, K.G. Harding, N.A.Lahmann, M.J. Lubbers, C.H. Lyder, T. Ohura, H.L. Orsted, S.I. Reger, M. Romanelli, H. Sanada, Dilemmas in measuring and using pressure ulcer prevalence and incidence: an international consensus. Int Wound J,.6(2): 97-104, 2009.
[4] 中央健保局健保雙月刊. 中西醫合併共診試辦計畫結合醫療專業療效更加分. 2009.
[5] Dorner, B., M.E. Posthauer, D. Thomas, The role of nutrition in pressure ulcer prevention and treatment:National Pressure Ulcer Advisory Panel white paper. Adv Skin Wound Care. 22(5): 212-21, 2009.
[6] Reddy, M., S.S. Gill, S.R. Kalkar,W.Wu, P.J. Anderson, P.A. Rochon, Treatment of pressure ulcers: a systematic review. JAMA. 300(22): 2647-62, 2008.
[7] His RA, Rosenthal DI, Glatstein E: Photodynamic therapy in the treatment of cancer Drugs. 57:725-734, 1999.
[8] Lim, H.J., Oh, C.H., Indocyanine green-based photodynamic therapy with 785nm light emitting diode for oral squamous cancer cells. Photodiagnosis and Photodynamic Therapy, 8, 337—342, 2011.
[9] Dougherty, T.J., C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng,Photodynamic therapy. J Natl Cancer Inst. 90(12): 889-905, 1998.
[10] Kennedy, J.C., R.H. Pottier, D.C. Pross, Photodynamic therapy with endogenous protoporphyrin IX: basicprinciples and present clinical experience. J Photochem Photobiol B. 6(1-2): 143-8. , 1990
[11]Kalka K, Merk H, Mukhtar H: Photodynamic therapy in dermatology. J Am Acad Dermatol.42:389-413,2000.
[12] His RA, Rosenthal DI, Glatstein E: Photodynamic therapy in the treatment of cancer. Drugs;57:725-34,1999.
[13] Neupane, Jitesh,Ghimire, Sabitri,Shakya, Sajina,Chaudhary, Lilamber, Shrivastava, Vishwa P. ,Effect of light emitting diodes in the photodynamic therapy of rheumatoid arthritis. Photodiagnosis and Photodynamic Therapy.7(44-49) ,2010.
[14] Hamblin MR, Zahra T, Contag CH, et al: Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis;187:1717-25, 2003.
[15] Wong TW, Wang YY, Sheu HM, et al: Bactericidal effects of toluidine blue mediated photodynamic action on Vibrio vulnificus. Antimicrobial Agents Chemother (in press). Antimicrob Agents Chemother. 49(3): 895–902,2005.
[16] Chen, W.R. , R.L. Adams, K.E. Bartels, R.E. Nordquist, Chromophore-
enhanced in vivo tumor cell destruction using an 808-nm diode laser. Cancer Lett, 1995. 94(2): 125-31, 1995.
[17] Chen,W.R., R.L. Adams, A.K. Higgins, K.E. Bartels, R.E. Nordquist, Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study. Cancer Lett. 98(2): 169-73,1996.
[18] Ghada S Omar, Michael Wilson ,Sean P Nair, Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light.BMC Microbiology,.8:111 , 2008.
[19] Sokal N. O. , Sokal A. D., “Class E- A New Class of High Efficiency Tuned Single-Ended Switching Power Amplifiers”, IEEE Journal of Solid-State Circuits.10:168-176, 1975.
[20] Kendir G. A., Liu W., Wang G., “An Optimal Design Methodology for Inductive Power Link with Class-E Amplifier”, IEEE Transactions on Circuits and System-I: Regular Papers;52:857-866, 2005.
[21] Carta, R.,Sfakiotakis, M.,Pateromichelakis, N.,Thoné, J.,Tsakiris, DP,Puers, R.,A multi-coil inductive powering system for an endoscopic capsule with vibratory actuation.Sensors and Actuators A:Physical.172(1):253-258,2011.
[22]曾盟凱, “無線射頻光源系統研發應用於倉鼠口腔前期癌病變的體內光動力治療”, 中原大學生物醫學工程學系碩士學位論文, 民國100年7月
[23]葛宗融, “植入式光源系統設計於腦膠質瘤光動力治療之可行性探討”, 中原大學生物醫學工程學系碩士學位論文, 民國97年7月
[24] Hamblin, M.R.,T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci, 3(5): 436-50,2004.
[25] Bown SG: Photodynanic therapy in gastroenterology- current status and future prospects. Endoscopy .25:683-685,1993.
[26] Barr H: Photodynamic therapy in gastrointestinal cancer. Drugs Aging.16:81-86, 2000.
[27]Nowak JZ: Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacological Reports , 58: 353-63,2006.
[28] Smith TC, Lee L: Age related macular degeneration New developments in treatment. Aust Fam Physician,36: 359-61, 2007.
[29]方煒、林清源,“高亮度發光二極體於生物產業之應用” 農機/生機論文發表會, 2005.
[30] Hui Huang Cheng, De-Shau Huang, Ming-Tzer Lin “Heat dissipation design and analysis of high power LED array using the finite element method.” Microelectronics Reliability, 2012.
[31]劉如熹,發光二極體用氧氮螢光粉介紹,全華科技圖書股份有限公司,2006.
[32] El-Hamamsy S.-A., Design of high-efficiency RF class-D power Amplifier. IEEE Transactions on Power Electronics, 1994; Vol. 9, No. 3, May.
[33] Daltrey, D.C., B. Rhodes, J.G. Chattwood, Investigation into the microbial flora of healing and non-healing decubitus ulcers. J Clin Pathol. 34(7): 701-5, 1981.
[34] Folch A. , Toner M., Cellular Micropatterns on Biocompatible Materials. Biotechnology Progress, 14, 388-392, 1998.
[35] Peterson S. L., McDonald A., Gourley P. L., Sasaki D. Y., Poly (dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells. Journal of Biomedical Materials Research Part A, Volume 72A Issue 1, 10-18, 2004.
[36] Anja Pieslinger, Kristjan Plaetzer, Christian Benno Oberdanner, Juergen Berlanda,Heidemarie Mair, Barbara Krammer, Tobias Kiesslich, Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: A possible low-cost supplement to conventional light sources for photodynamic treatment. Medical Laser Application 21 , 277–283, 2006.
[37] 郭佑啟:光動力療法。台灣醫界;46:487-90,2003
[38] Abels, C., S. Karrer,W. Baumler, A.E. Goetz, M. Landthaler, R.M. Szeimies, Indocyanine green and laser light for the treatment of AIDS-associated cutaneous Kaposi's sarcoma. Br J Cancer. 77(6): 1021-4, 1998.
[39] Abels, C., S. Fickweiler, P. Weiderer,W. Baumler, F. Hofstadter, M. Landthaler, R.M. Szeimies, Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch Dermatol Res, 292(8): 404-11, 2000.
[40] Bozkulak O.,Yamaci R. F.,Tabakoglu O.,Gulsoy M., Photo-toxic effects of 809-nm diode laser and indocyanine green on MDA-MB231 breast cancer cells. Photodiagnosis and Photodynamic Therapy , 117—121, 2009.
[41] Foster T. Staphylococcus. In: Barron's Medical Microbiology (Barron Setal, eds.) 4th ed. Univ of Texas Medical Branch. 1996.
[42]中央健康保局, “國內外新知社區型methicillin抗藥性金黃色葡萄球菌盛行率及危險因素統合分析”. 感染控制雜誌 第17期 第2卷
[43] Sauer C. , Stanacevic M. , Cauwenberghs G., et al., Power harvesting and telemetry in CMOS for implanted devices. Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, pp. 2605-2613, 2005.
[44] Yokoyama M, Tanigawa K, Murata T, et al., Dietary polyunsaturated fatty acids slow the progression of diabetic nephropathy in streptozotocin-induced diabetic rats. Nutrition Research, vol. 30, pp. 217-225, 2010.
[45]全民健康保險雙月刊第89期 (100年1月號 )
[46] Maisch, T., R.M. Szeimies, N. Lehn, C. Abels, "Antibacterial photodynamic therapy A new treatment for bacterial skin diseases?". Hautarzt, 56(11): 1048-55,2005.
[47] Maisch, T., A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem, 9(8): 974-83,2009.
[48]Lin, H.Y., Chen, C.T. & Huang, C.T. Use of merocyanine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Applied and environmental microbiology 70, 6453-6458 ,2004.
[49] Topaloglu N, Gulsoy M, Yuksel S, “Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser.” Photomed Laser Surg ,31(4):155-62, 2013.
[50] Tang, H.M., Hamblin, M.R., and Yow, C.M.N. A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens. J. Infect. Chemother. 13, 87–91 ,2007.
[51] Grinholc, M., Szramka, B., Kurlenda, J., Graczyk, A., and Bielawski, K.P. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillinsusceptible Staphylococcus aureus is strain-dependent. J. Photochem. Photobiol. B. 90, 57–63, 2008.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top