[1] Basel Committee on Banking Supervision, “Consultative Document: The Standardised Approach to Credit Risk”, Basel Report, June 2004.
[2] Basel Committee on Banking Supervision, “Consultative Document: The Internal Ratings-Based Approach to Credit Risk”, Basel Report, June 2004.
[3] Jagielska, I., Matthews, C., and Whitfort, T., (1999), “An Investigation into the Application of Neural Networks, Fuzzy Logic, Genetic Algorithms, and Rough Sets to Automated Knowledge Acquisition for Classification Problems,” Neurocomputing, Vol.24, pp.37-54.
[4] Piramuthu, S., (1999), “Financial Credit-Risk Evaluation with Neural and Neurofuzzy Systems,” European Journal of Operational Research, Vol.112, pp.310-321.
[5] Piramuthu, S., (1999), “Feature Selection for Financial Credit-Risk Evaluation Decisions,” INFORMS Journal on Computing Vol.11, pp.258-266.
[6] West, D., (2000), “Neural Network Credit Scoring Models,” Computers And Operations Research, Vol.27, pp.1131-1152.
[7] Huang, Y.H., Hung, C.M., and Jiau, H.C., (2006), “Evaluation of Neural Networks and Data mining Methods on a Credit Assessment Task for Class Imbalance Problem,” Nonlinear Analysis: Real Worlds Applications, Vol.7, pp.720-747.
[8] Yang, Y., (2007), “Adaptive Credit Scoring with Kernel Learning Methods,” European Journal of Operational Research, Vol.183, pp.1521-1536.
[9] Baesens, B., Gestel, T., Viane, S., Stepanova, M., Suykens, J., and V,anthienen J., (2003), “Benchmarking State of the Art Classification Algorithms for Credit Scoring,” Computer Journal of the Operational Research Society, Vol.54, pp.627-635.
[10] Desai, V., Crook, J., and Overstreet, G., (1996), “A Comparison of Neural Networks and Linear Scoring Models in the Credit Union Environment,” European Computer Journal of Operational Research, Vol.95, pp.24-37.
[11] Ruei-Shan, Lu and Shang-Lien, Lo., (2002),“Diagnosing reservoir water quality using self-organizingmaps and fuzzy theory,”Water Research, Vol.36, pp.2265-2274.
[12] Malhotra, R. and Malhotra, K., (2003), “Evaluating Consumer Loans Using Neural Networks,” Omega Computer Journal, Vol.31, pp.83-96.
[13] Pang, S., Wang, Y., and Bai, Y., (2003), “Credit Scoring Model Based on Miltilayer Perceptron,” in Proceedings of the IEEE International Symposium on Intelligent Control, Houston, USA, pp.5-8.
[14] West, D., Dellana, S., and Qian, J., (2005), “Neural Network Ensemble Strategies for Financial Decision Applications,” Computer Journal of Operations Research, Vol.32, pp.2543-2559.
[15] Khashman, A., (2010), “Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes,” Expert Systems with Applications, Vol.372, pp.6233-6239.
[16] Eliana, Angelini., Giacomo, di, Tollo and Andrea, Roli., (2008), “A neural network approach for credit risk evaluation,” The Quarterly Review of Economics and Finance, Vol.48, pp.733-755.
[17] Hussein, Abdou., John, Pointon and Ahmed, El-Masry., (2008), “Neural nets versus conventional techniques in credit scoring in Egyptian banking,” Expert Systems with Applications, Vol.35, pp.1275-1292.
[18] Maja, Šušteršič., Dušan, Mramor and Jure, Zupan., (2009), “Consumer credit scoring models with limited data,” Expert Systems with Applications, Vol.36, pp.4736-4744.
[19] Chung, S, H., and Suh, Y, M.., (2009), “Estimating the utility value of individual credit card delinquents,” Expert Systems with Applications, Vol.36, pp.3975-3981.
[20] Johan, Huysmans., Bart, Baesens., Jan, Vanthienen and Tony van, Gestel., (2006), “Failure prediction with self organizing maps,”Expert Systems with Applications, Vol.30, pp. 479-487.
[21] Arijit, Laha., (2007),“Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method forcredit scoring,”Advanced Engineering Informatics, Vol.21, pp.281-291.
[22] Jiahui, Mo., Melody, Y., Kiang., Peng, Zou and Yijun, Li., (2010),“A two-stage clustering approach for multi-region segmentation,”Expert Systems with Applications, Vol.37, pp.7120-7131.
[23] 電子商務研究所創新資訊應用中心金融服務組(2005),信用風險議題與資訊平台規劃,台北:經濟部技術處。
[24] 沈大白、張大成(2003),信用風險模型評估-以台灣市場為例,聯合徵信中心委託計畫報告書。
[25] 葉怡成(2009),類神經網路模式應用與實作,台北:儒林。
[26] 邱莉晴(2004),違約企業戶違約比率比對研究,金融風險管理季刊:12月號。
[27] 盧瑞山(1999),類神經網路於環境資訊之鑑識、推估及預測之研究,博士論文,國立台灣大學環境工程學研究所。[28] 黃憲章(2002),新版巴塞爾資本協定對我國金融業營運風險管理之衝擊,碩士論文,元智大學管理研究所。[29] 胡志宏(2002),新版巴塞爾資本協定對我國金融業信用風險管理之衝擊,碩士論文,元智大學管理研究所。[30] 吳智鴻(2003),結合基因演算法最佳化「支持向量機」參數-財務危機上之應用,博士論文,國立台北大學企業管理學系。[31] 吳志鴻(2004),新巴塞爾協定下台灣上市櫃公司信用風險評等與財務危機預警類神經網路模型之研究,碩士論文,國立政治大學資訊管理研究所。[32] 吳姿瑤(2005),國內開放式股票型基金在分類與預測模式比較之研究,碩士論文,國立成功大學統計學系。[33] 洪琳美(2005),運用支撐向量機與類神經網路於銀行授信之研究,碩士論文,國立台灣科技大學資訊管理系。[34] 黃銘圭(2006),財務收益力、安全力建置財務危機預測模式-以台灣上市櫃一般產業公司為例,碩士論文,國立台北大學企業管理學系。[35] 紀英成(2006),財務報表舞弊之現象及其識別,碩士論文,朝陽科技大學會計所。[36] 林志雄(2006),台灣上市上櫃公司經營績效之預測 -人工智慧與傳統計量方法之應用,碩士論文,東吳大學經濟研究所。[37] 林靜婉(2006),六種資料探勘技術在風險預測之比較,碩士論文,中華大學資訊管理學系。[38] 范鴻晸(2006),智慧資本於財務危機預警模式之應用,碩士論文,朝陽科技大學財務金融系碩士班。[39] 林燕萍(2007),消費性貸款違約行為預測模式之研究—DEA-DA、類神經網路、Logistic迴歸與判別分析之比較,碩士論文,中華大學經營管理研究所。[40] 黎靜怡(2007),結合財務比率及公司治理變數於財務危機分類模式之建構-以台灣上巿櫃公司為例,碩士論文,輔仁大學國際創業與經營管理學程碩士在職專班。[41] 黃立維(2008),結合資料採礦技術於建構建築業財務危機預警與關鍵因素分析模型之研究,碩士論文,雲林科技大學營建工程系碩士班。[42] 黃柏誠(2009),類神經網路與鑑別分析在中小企業貸款違約預警模型之實證研究,碩士論文,國立臺灣科技大學資訊管理系。