跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉俊賢
研究生(外文):Jyun-Sian Ye
論文名稱:鈀、鉑觸媒應用於非酵素葡萄糖感測
論文名稱(外文):Pd and Pt catalysts as non-enzymatic glucose sensor
指導教授:李建良李建良引用關係
指導教授(外文):Chien-Liang Lee
口試委員:卓錦江陳東煌許梅娟關旭強
口試委員(外文):Jiin-Jiang JowDong-Hwang ChenMei-Jywan SyuHsu-Chiang Kuan
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:128
中文關鍵詞:非酵素葡萄糖感測
外文關鍵詞:non-enzymatic glucose sensors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:479
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
摘要
(1) 多臂鉑殼層包覆鈀奈米立方體應用於非酵素葡萄糖感測
本研究製備多臂鉑殼層包覆鈀奈米立方體應用作為葡萄糖氧化反應觸媒,並進一步作為非酵素葡萄糖感測器。首先在0.1M 氫氧化納溶液中,可計算出多臂鉑殼層包覆鈀奈米立方體及鉑奈米粒子之電化學活性面積分別為1.14 cm2及0.71 cm2,代表多臂鉑殼層包覆鈀奈米立方體可提供較多的活性點進行反應,而在添加5mM葡萄糖後,主要以A2峰(-0.27V vs. Ag/AgCl)進行探討,可發現催化葡萄糖的電流大小,多臂鉑殼層包覆鈀奈米立方體為0.322 mA高於鉑奈米粒子的0.187 mA;而鈀奈米立方體之峰電流(-0.103V vs. Ag/AgCl)則較高,為0.63 mA,其原因為較能抵抗中間產物之毒化。在塔弗分析得知多臂鉑殼層包覆鈀奈米立方體具有較快的起始電位為-0.855V,優於鉑奈米粒子-0.813V及鈀奈米立方體之-0.705V,且交換電流密度為1.8×10-2mA cm-2。而在靈敏度分析於定電位-0.05V ( vs Ag / AgCl),多臂鉑殼層包覆鈀奈米立方體及鉑奈米粒子靈敏度分別為170 μA mM-1 cm-2及45.7 μA mM-1 cm-2,而偵測範圍分別為0.3~6.8 mM及0.3~5.2 mM,綜合以上結果可知多臂鉑殼層包覆鈀奈米立方體表現出較高的葡萄糖催化活性,且應用於真實樣品中也具有良好的回收率。
(2) 八面體、十二面體、立方體鈀奈米粒子作為觸媒催化葡萄糖氧化反應以及
非酵素葡萄糖感測研究
本研究藉由掃描式電子顯微鏡以及X光繞射分析確認成功製備出具單一(100)晶面之鈀立方體、具單一(111)晶面之鈀八面體及具單一(110)晶面之鈀斜方十二面體,比較在鹼性電解液中其不同型態粒子對葡萄糖氧化之影響,在0.1M 氫氧化納溶液中,發現鈀立方體表現出較鈀八面體及鈀斜方十二面體較強的PdO還原峰電流,再添加葡萄糖後針對葡萄糖氧化峰探討單位活性面積所貢獻之電荷量,鈀立方體、鈀八面體及鈀斜方十二面體分別為3089.6 μC cm-2 、1040.6 μC cm-2 及847.7 μC cm-2,發現鈀立方體之催化活性約為鈀八面體之2.97倍及鈀斜方十二面體之3.6倍,更進一步在靈敏度分析方面於定電位-0.05 V ( vs Ag / AgCl)下,鈀立方體也擁有良好的靈敏度及線性範圍分別為19.7 μA mM-1 cm-2;0.5~10 mM, 9.5 μA mM-1 cm-2;11~20 mM,確實可應用於人體血糖範圍之偵測。綜合以上結果得知不同型態鈀粒子對葡萄糖的催化活性為鈀立方體 > 鈀八面體 > 鈀斜方十二面體。
(3) 鉑奈米粒子附載於不同管徑之碳纖維應用於非酵素葡萄感測
本研究以白金粒子做為觸媒,並以三種不同管徑之碳纖維做為載體,比較載體管徑不同對非酵素葡萄糖感測的影響。以穿透式電子顯微鏡、掃描式電子顯微鏡及X-ray繞射儀確認白金粒子成功附載於不同管徑之碳纖維上(Pt / CF39nm、Pt / CF158nm、Pt / CF309nm),且以熱重分析儀得知附載的白金粒子實際含量Pt / CF39nm、Pt / CF158nm、Pt / CF309nm分別為60.26 wt%、64.38 wt%、66.86 wt%。接著固定白金重量為56.5 μg / cm2進行電化學分析,在0.1M 氫氧化納溶液中,進行循環伏安法分析,得知 Pt / CF39nm、Pt / CF158nm、Pt / CF309nm之電化學活性面積分別為1.453 cm2、1.361 cm2、0.843 cm2,其是由於較小管徑的碳纖維有較高的曲率,且可提供更多表面積供白金粒子吸附,在添加葡萄糖後Pt / CF39nm也呈現出較佳的催化活性,在塔弗分析得知Pt / CF39nm之交換電流密度為9.08×10-3 mA / cm2優於Pt / CF158nm為8.41×10-3 mA / cm2及Pt / CF309nm為 7.39×10-3 mA / cm2,在靈敏度分析方面於定電位-0.05V (vs Ag / AgCl)下,Pt / CF39nm、Pt / CF158nm、Pt / CF309nm之靈敏度分別為2.03 A mM-1 cm-2、1.633 A mM-1 cm-2、1.01 A mM-1 cm-2;偵測範圍分別為0.3~17 mM、0.3~15 mM、0.3~13 mM,綜合以上結果可知Pt / CF39nm展現出較高的葡萄糖催化活性,且不受干擾物抗壞血酸及尿酸的影響,對葡萄糖具專一性,於真實樣品中也具有良好的回收率。

Abstract

(1) Pd-Pt multi-armednanocubes as non-enzymatic glucose sensor
Pd-Pt multi-armed nanocubes were preparedand successfully used as catalysts for being a non-enzymatic glucose sensor. Compared with the Pt nanoparticles, Pd-Pt multi-armed nanocubes exhibited a higher electrochemically real surface area and greater catalytic activity on glucose oxidation.Furthermore, the Tafel analyses demonstrated that the exchange current density for the Pd-Pt multi-armednanocubes was 1.8×10-2 mA / cm2, greater than 1.51×10-2 mA / cm2 for Pt nanoparticles and 1.29×10-2 mA / cm2 for Pd nanocubes. Additionally, the ampermetric analyses showed that the sensitivity and linear range for Pd-Pt multi-armed nanocubes were 170 μA mM-1 cm-2 and 0.3-6.8 mM, respectively, whereas Pt nanoparticles had 45.7 μA mM-1 cm-2 forsensitivity and 0.3-5.2 mM for sensing linear range. The Pd-Pt multi-armed nanocubes showed the better sensitivity and linear range for sensing glucose without need enzymes.

(2) Cubic, octahedral, and rhombic dodecahedral Palladium nanoparticles as catalyst
for glucose oxidation reaction and sensing glucose
Pd nanocubes enclosed with (100) planes, Pd nanooctahedrons enclosed with (111) planes, and Pd nanododecahedrons enclosed with (110) planes were preapred and used as catalysts for glucose oxidation reaction (GOR) and non-enzyamtic glucose sensor. The cyclic voltammetric measurements for GORs showed that the specific activity in terms of electrochemical surface area for Pd nonacubes was 3089.6 μC cm-2, 2.97 times and 3.6 times higher than Pd octahedron (1040.6 μC cm-2) and Pd rhombic dodecahedron (847.75 μC cm-2), respectively. The Pdnanocubes enclosed by (100) planes exhibited better activity in GOR. Furthermore, the ampermetric analyses showed that Pd nanocubes for sensing glucose displayed two linear ranges: 0.5- 10 mM and 11-20 mM.The sensitivities for Pd nanocubes were 0.0197 mA mM-1 cm-2 and 0.0095 mA mM-1 cm-2 in the first and latter linear range.

(3) Diameter effect of electrospun carbon fiber support for the catalysis of Pt
nanoparticles in glucose oxidation
Electrospun carbon fibers (CF) with diameters of 39 nm (CF39nm), 158 nm (CF158nm), and 309 nm (CF309nm) were used as Pt-catalyst supports for a glucose oxidation reaction. Based on experimentally balanced comparisons using electrochemical methods, CF39nm with higher curvature and smaller diameter had a greater number of Pt atoms on the surface. Compared with the CF158nm and CF309nm systems, CF39nm has a higher electrochemically real surface area and greater catalytic activity on glucose oxidation. The Tafel analyses demonstrated that the exchange current density for the CF39nm system was 9.08×10-3 mA / cm2, greater than 8.41×10-3 mA / cm2 for CF158nm-supported Pt nanoparticles and 7.39×10-3 mA / cm2 for CF309nm-supported Pt nanoparticles. In addition, as data supporting the catalytic characterization for glucose oxidation, all of the CF-supported Pt nanoparticles showed remarkable tolerance to foreign substances in the application of a non-enzymatic glucose sensor, where CF39nm-supported Pt nanoparticles (Pt/CF39nm) showed a higher sensitivity (2.03 A∙mM−1∙cm−2), detection limit (33 M), and linear range (0.3–17 mM). The high recovery by serum sample analyses further confirmed the potential of Pt/CF39nm as a glucose sensor. The promising results showed the feasibility of these electrospun CFs being applied for both glucose fuel cells and non-enzymatic glucose sensors.

總目錄
摘要 i
Abstract iii
誌謝 vi
總目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 1
第二章 文獻回顧 3
2.1葡萄糖簡介 3
2.2感測器簡介 3
2.2.1酵素型感測器 4
2.2.2非酵素型感測器 5
2.2.2.1鉑觸媒 6
2.2.2.2鈀觸媒 9
2.2.2.3金觸媒 10
2.2.2.4銀觸媒 11
2.2.2.5鎳觸媒 13
2.2.2.6銅觸媒 14
第三章 多臂鉑殼層包覆鈀奈米立方體應用於非酵素葡萄糖感測 16
3.1 前言 16
3.2 實驗方法 17
3.2.1 實驗藥品 17
3.2.2 實驗儀器 19
3.3實驗步驟 20
3.3.1 多臂鉑殼層包覆鈀奈米立方體之製備 20
3.3.2 鉑奈米粒子之製備 22
3.3.3物理性質分析 23
3.3.4 電化學分析 23
3.4 結果與討論 25
3.4.1 物理性質分析 25
3.4.2 電化學性質分析 32
3.5 結論 45
第四章 八面體、十二面體、立方體鈀奈米粒子作為觸媒催化葡萄糖氧化反應及非酵素葡萄糖感測研究 46
4.1 前言 46
4.2 實驗方法 47
4.2.1 實驗藥品 47
4.2.2 實驗儀器 49
4.3實驗步驟 51
4.3.1鈀晶種液之製備 51
4.3.2鈀奈米立方體粒子之製備 52
4.3.3鈀八面體奈米粒子之製備 53
4.3.4鈀斜方十二面體奈米粒子之製備 54
4.3.5物理性質分析 55
4.3.6 電化學分析 55
4.4 結果與討論 57
4.4.1 物理性質分析 57
4.4.2 電化學性質分析 62
4.5 結論 75
第五章 鉑奈米粒子附載於不同管徑之碳纖維應用於非酵素葡萄感測 76
5.1 前言 76
5.2 實驗方法 77
5.2.1 實驗藥品 77
5.2.2 實驗儀器 79
5.3實驗步驟 81
5.3.1 鉑奈米粒子附載於不同管徑之碳纖維的製備 81
5.3.2物理性質分析 82
5.3.3 電化學分析 82
5.4 結果與討論 84
5.4.1 物理性質分析 84
5.4.2 電化學性質分析 90
5.5 結論 100
參考文獻 101
自述 113


表目錄
表2-1 各種金屬應用於非酵素葡萄糖感測結論整理表 15
表3-1 實驗藥品 17
表3-2 實驗儀器 19
表3-3 Pd-Pt multi-armed NCs、Pd NCs、Pt NPs之特徵峰與晶面關係表 29
表3-4 Pd-Pt multi-armed NCs鈀金屬3d3/2;3d5/2及鉑金屬4f5/2;4f7/2之鍵結 能 31
表3-5 Pd-Pt multi-armed NCs、Pt NPs、Pd NCs於0.1M NaOH溶液之循環伏安曲線波峰電位與電流之比較 33
表3-6 Pd-Pt multi-armed NCs;Pt NPs及Pd NCs於0.1M NaOH溶液中添加5mM葡萄糖之循環伏安曲線波峰電位與電流比較 36
表3-7 Pd-Pt multi-armed NCs、Pt NPs、Pd NCs之塔弗曲線圖相關參數 38
表3-8 正常人體血液中所含的有機分子濃度 39
表3-9 Pd-Pt multi-armed NCs、Pt NPs對葡萄糖感測性能指標參數 41
表3-10 不同電極觸媒對葡萄糖感測性能之比較 42
表3-11 Pd-Pt multi-armed NCs之真實樣品測試參數 44
表4-1 實驗藥品 47
表4-2 實驗儀器 49
表4-3 Pd NCs、Pd Octs、Pd Rds之XRD、TEM粒徑統計比較表 61
表4-4 Pd NCs、Pd Octs及Pd Rds之電化學活性面積 63
表4-5 Pd NCs、Pd Octs及Pd Rds於0.1M NaOH溶液之循環伏安曲線波峰電位與電流之比較 64
表4-6 Pd NCs、Pd Octs及Pd Rds於0.1M NaOH中添加5mM葡萄糖之循環伏安曲線波峰電位與電流比較 66
表4-7 葡萄糖催化之A2、A3峰與電化學活性面積整理表 67
表4-8 Pd NCs、Pt NPs、Pd NCs之塔弗曲線圖相關參數 68
表4-9 Pd NCs、Pd Octs、Pd Rds對葡萄糖感測性能指標參數 72
表4-10 不同電極觸媒對葡萄糖感測性能之比較 73
表5-1 實驗藥品 77
表5-2 實驗儀器 79
表5-3 Pt / CF39nm、Pt / CF158nm、Pt / CF309nm之XRD相關參數 88
表5-4 Pt / CF39nm、Pt / CF158nm、Pt / CF309nm於0.1M NaOH溶液之循環伏
安曲線波峰電位與電流之比較 91
表5-5 Pt / CF39nm、Pt / CF158nm、Pt / CF309nm於0.1M NaOH溶液中添加5mM葡萄糖之循環伏安曲線波峰電位與電流比較 93
表5-6 Pt / CF39nm、Pt / CF158nm、Pt / CF309nm對葡萄糖感測性能指標參數 97
表5-7 不同電極觸媒對葡萄糖感測性能之比較 98
表5-8 Pt / CF39 nm之真實樣品測試參數 99
圖目錄
圖 2-1 葡萄糖於 pH=7 之三種異構物 3
圖2-2 葡萄糖酵素型感測器世代演進及反應機制 5
圖2-3 近年來非酵素型感測器研究數量 5
圖2-4 金屬氧化物催化葡萄糖機制 6
圖2-5 鉑電極於PBS pH=7.0 + 100 mM glucose之循環伏安曲線圖 7
圖2-6 鉑金屬催化葡萄糖反應機制,(a) 氫區 (b)電雙層區 (c)氧化區 7
圖2-7 鉑電極於含有100 mM glucose之循環伏安圖(A)酸性電解液(B)中性電解
液實線為添加glucose後的曲線 8
圖2-8 鈀觸媒於0.1M NaOH溶液 (虛線) + 100mM glucose(實線)之循環伏安曲線圖 9
圖2-9 金觸媒催化葡萄糖反應機制(a)機制一 (b)機制二 10
圖2-10 不同Au粒子形貌在0.1 M NaOH溶液中加入10 mM glucose之循環伏
安曲線圖 (a) cubic (b) octahedra (c)Rhombic dodecahedra (d) 不同Au粒子形貌於 -0.4 V vs. Ag / AgCl之定電位曲線圖 11
圖2-11 銀觸媒於 0.1M NaOH溶液之循環伏安曲線圖(a) 0mM glucose (b)添加5mM glucose 12
圖2-12 銀觸媒催化葡萄糖反應機制 12
圖2-13 鎳觸媒催化葡萄糖反應機制 13
圖2-14 鎳觸媒於1M KOH溶液中加入1mM glucose之循環伏安曲線圖 13
圖2-15 0.1M NaOH溶液(實線) 加入 1mM glucose (虛線)之循環伏安曲線圖 (A)bare GCE (B) CuO nanoparticles (C) CuO nanoplatelets (D) CuO nanorods 14
圖3-1多臂鉑殼層包覆鈀奈米立方體製備流程圖 21
圖3-2鉑奈米粒子製備流程圖 22
圖3- 3電化學分析裝置示意圖 24
圖3-4 穿透式電子顯微鏡影像圖及粒徑統計圖(A)、(B) Pd-Pt multi-armed NCs,
(C)、(D) Pd NCs,(E)、(F) Pt NPs 26
圖3-5 Pd-Pt multi-armed NCs (A) 高解析穿透式電子顯微鏡影像圖 (B) 暗場
影像圖 27
圖3-6 Pd-Pt multi-armed NCs (A) 線性掃描元素分析圖 (B) 高解析電子顯微鏡影像圖 28
圖3-7 X-光繞射分析圖譜(A) Pd-Pt multi-armed NCs(B) Pt NPs(C) Pd NCs 29
圖3-8 Pd-Pt multi-armed NCs之X射線電子能譜圖(A)Pd電子軌域 (B)Pt電子軌域 30
圖3-9 觸媒於飽和氮氣下0.1M NaOH溶液飽和氮氣下之循環伏安曲線圖, scaning rate : 50 mV/s,觸媒用量192 μg / cm2 33
圖3-10 觸媒於0.1M NaOH溶液飽和氮氣下,添加5mM葡萄糖之循環伏安曲線圖,scaning rate : 50 mV/s,觸媒用量192 μg / cm2 36
圖3-11 觸媒於0.1M NaOH溶液飽和氮氣下,添加5mM葡萄糖之塔弗曲線圖, scaning rate : 10 mV/s,觸媒用量192 μg / cm2 38
圖3-12 觸媒於0.1M NaOH溶液飽和氮氣下,定電位 -0.05 V 200rpm持續旋轉之葡萄糖選擇性測試,觸媒用量192 μg / cm2 39
圖3-13 觸媒於0.1M NaOH溶液飽和氮氣下,定電位 -0.05 V 200rpm持續旋轉
之靈敏度分析,內圖為葡萄糖濃度對應答電流關係圖,觸媒用量192 μg/ cm2 40
圖3-14 Pd-Pt multi-armed NCs於0.1M NaOH溶液飽和氮氣下,定電位 -0.05V 200rpm持續旋轉之真實樣品測試,觸媒用量192 μg / cm2 43
圖4-1 各種形貌與其晶面關係圖 46
圖4-2 晶種液製備流程圖 51
圖4-3 鈀奈米立方體製備流程圖 52
圖4-4 鈀八面體製備流程圖 53
圖4-5 鈀斜方十二面體製備流程圖 54
圖4-6 電化學分析裝置示意圖 56
圖4-7 觸媒穿透式電子顯微鏡影像圖、掃描式電子顯微鏡圖( A )、( B ) Pd NCs ( C )、( D ) Pd Octs ( E )、( F ) Pd Rds 57
圖4-8 Pd NCs、Pd Octs及Pd Rds之平均粒徑統計圖 58
圖4-9 穿透式電子顯微鏡影像圖、電子繞射分析圖及高解析電子顯微鏡影像圖 ( A )、( B )、( C ) Pd NCs( D )、( E )、( F ) Pd Octs ( G )、( H )、( I ) Pd Rds 59
圖4-10 X-光繞射分析圖譜(A)Pd NCs (B)Pd Octs (C)Pd Rds 60
圖4-11 Pd NCs 、Pd Octs及Pd Rds之銅欠電位沉積法循環伏安曲線圖,觸媒 用量192 μg / cm2 62
圖4-12 Pd NCs、Pd Octs及Pd Rds於飽和氮氣下0.1M NaOH溶液之循環伏安曲線圖,scaning rate : 50 mV/s,觸媒用量192 μg / cm2 64
圖4-13 Pd NCs、Pd Octs及Pd Rds於0.1M NaOH溶液飽和氮氣下,添加5mM葡萄糖之循環伏安曲線,scaning rate : 50 mV/s ,觸媒用量192 μg / cm2 66
圖4-14 Pd NCs、Pd Octs及Pd Rds於0.1M NaOH溶液飽和氮氣下,添加5mM葡萄糖之塔弗曲線圖,scaning rate :10 mV/s,觸媒用量192 μg / cm2 68
圖4-15 Pd NCs 、Pd Octs及Pd Rds以RDE電極於0.1M NaOH溶液飽和氮氣下,定電位 -0.05 V 1600rpm持續旋轉之葡萄糖選擇性測試,觸媒用量192μg / cm2。 69
圖4-16 Pd NCs、Pd Octs、Pd Rds 添加待測物之電流回應柱狀圖 70
圖4-17 Pd NCs、Pd Octs、Pd Rds於0.1M NaOH溶液飽和氮氣下,定電位 -0.05V 200rpm持續旋轉之靈敏度分析,內圖為葡萄糖濃度對應答電流關係圖,觸媒用量192 μg / cm2 71
圖4-18 Pd NCs、Pd Octs、Pd Rds於0.1M NaOH溶液飽和氮氣下,定電位-0.05 V 200rpm持續旋轉之真實樣品測試,觸媒用量192 μg / cm2 74
圖5-1鉑奈米粒子附載於不同管徑碳纖維製備流程圖 81
圖5-2電化學分析裝置示意圖 83
圖5-3 三種不同管徑之碳纖維SEM圖(A) 39 nm (B) 158 nm (C) 309 nm(D)平均管徑圖 84
圖5-4 X射線光電子能譜圖(A) CF39nm (B) CF158nm (C) CF309nm 85
圖5-5 反應性微胞法合成機制圖 86
圖5-6 鉑奈米粒子附載於三種不同管徑之碳纖維穿透式電子顯微鏡影像圖(內插圖為鉑奈米粒子粒徑統計圖)(A)Pt / CF39 nm (B) Pt / CF158nm (C) Pt /CF309 nm (D) 鉑奈米粒子粒徑分佈圖 87
圖5-7 Pt / CF39 nm、Pt / CF158nm、Pt / CF309 nm之X-光繞射光譜分析圖 88
圖5-8 Pt / CF39 nm、Pt / CF158nm、Pt / CF309 nm於氧氣下之熱重分析曲線圖 89
圖5-9 觸媒於0.1M NaOH溶液飽和氮氣下之循環伏安曲線圖,scaning rate : 50 mV/s,固定白金用量56.5 μg / cm2。 內插圖則為碳纖維之循環伏安曲線圖 91
圖5-10 觸媒於0.1M NaOH溶液飽和氮氣下,添加5mM葡萄糖之循環伏安曲線圖,scaning rate : 50 mV/s,固定白金用量56.5 μg / cm2 93
圖5-11 觸媒於0.1M NaOH溶液飽和氮氣下,添加5mM葡萄糖之塔弗曲線圖, scaning rate : 10 mV/s,固定白金用量56.5 μg / cm2 94
圖5-12 觸媒於0.1M NaOH溶液飽和氮氣下,定電位 -0.05 V 200rpm持續旋轉之葡萄糖選擇性測試,固定白金用量56.5 μg / cm2 95
圖5-13 觸媒於0.1M NaOH溶液飽和氮氣下,定電位 -0.05 V 200rpm持續旋轉之靈敏度分析,固定白金用量56.5 μg / cm2內圖為葡萄糖濃度對應答電流關係圖 96
圖5-14 Pt / CF39 nm於0.1M NaOH飽和氮氣下,定電位 -0.05 V 200rpm持續旋轉之真實樣品測試 99

[1] C.D. Mathers, D. Loncar, Projections of global mortality and burden of disease from 2002 to 2030. Plos Medicine. 3 (2006)
[2] G. Danaei, M.M. Finucane, Y. Lu, G.M. Singh, M.J. Cowan, C.J. Paciorek, J.K. Lin, F. Farzadfar, Y.H. Khang, G.A. Stevens, M. Rao, M.K. Ali, L.M. Riley, C.A. Robinson, M. Ezzati, C. Global Burden Metab Risk Factors, National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 378 (2011) 31-40.
[3] E.A. Hu, A. Pan, V. Malik, Q. Sun, White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. British Medical Journal. 344 (2012)
[4] S.R. Lee, Y.T. Lee, K. Sawada, H. Takao, M. Ishida, Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes. Biosensors and Bioelectronics. 24 (2008) 410-414.
[5] Y.M. Uang, T.C. Chou, Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. Biosensors and Bioelectronics. 19 (2003) 141-147.
[6] J. Chen, C.X. Zhao, M.M. Zhi, K. Wang, L. Deng, G. Xu, Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochimica Acta. 66 (2012) 133-138.
[7] I. Becerik, F. Kadirgan, The electrocatalytic properties of palladium electrodes for the oxidation of d-glucose in alkaline medium. Electrochimica Acta. 37 (1992) 2651-2657.
[8] D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. International Journal of Hydrogen Energy. 37 (2012) 4678-4684.
[9] X.M. Chen, Z.J. Lin, D.J. Chen, T.T. Jia, Z.M. Cai, X.R. Wang, X. Chen, G.N. Chen, M. Oyama, Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosensors and Bioelectronics. 25 (2010) 1803-1808.
[10]S. Xie, S.I. Choi, N. Lu, L.T. Roling, J.A. Herron, L. Zhang, J. Park, J. Wang, M.J. Kim, Z. Xie, M. Mavrikakis, Y. Xia, Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Letters. 14 (2014) 3570-3576.
[11]X. Yang, Y. Wang, Y. Liu, X. Jiang, A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochimica Acta. 108 (2013) 39-44.
[12]X. Chen, H. Pan, H. Liu, M. Du, Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochimica Acta. 56 (2010) 636-643.
[13]L.Y. Chen, T. Fujita, Y. Ding, M.W. Chen, A three-dimensional gold-decorated nanoporous copper core–shell composite for electrocatalysis and nonenzymatic biosensing. Advanced Functional Materials. 20 (2010) 2279-2285.
[14]T.H.M. Housmans, A.H. Wonders, M.T.M. Koper, Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study. Journal of Physical Chemistry B. 110 (2006) 10021-10031.
[15]J. Solla Gullon, F.J. Vidal Iglesias, A. Lopez Cudero, E. Garnier, J.M. Feliu, A. Aldaza, Shape-dependent electrocatalysis: Methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Physical Chemistry Chemical Physics. 10 (2008) 3689-3698.
[16]S. Kondo, M. Nakamura, N. Maki, N. Hoshi, Active sites for the oxygen reduction reaction on the low and high index planes of palladium. Journal of Physical Chemistry C. 113 (2009) 12625-12628.
[17]K.D. Popovic, N.M. Markovic, A.V. Tripkovic, R.R. Adzic, Structural effects in electrocatalysis - oxidation of d-glucose on single-crystal platinum-electrodes in alkaline-solution. Journal of Electroanalytical Chemistry. 313 (1991) 181-199.
[18]J. Wang, J. Gong, Y. Xiong, J. Yang, Y. Gao, Y. Liu, X. Lu, Z. Tang, Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chemical Communications. 47 (2011) 6894-6896.
[19]Q. Xu, L. Yin, C. Hou, X. Liu, X. Hu, Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing. Sensors and Actuators B: Chemical. 173 (2012) 716-723.
[20]H. Qiu, X. Huang, Effects of pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. Journal of Electroanalytical Chemistry. 643 (2010) 39-45.
[21]Z.X. Cai, C.C. Liu, G.H. Wu, X.M. Chen, X. Chen, Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose. Electrochimica Acta. 112 (2013) 756-762.
[22]S. Badhulika, R.K. Paul, Rajesh, T. Terse, A. Mulchandani, Nonenzymatic glucose sensor based on platinum nanoflowers decorated multiwalled carbon nanotubes-graphene hybrid electrode. Electroanalysis. 26 (2014) 103-108.
[23]L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Nonenzymatic electrochemical detection of glucose based on palladium−single-walled carbon nanotube hybrid nanostructures. Analytical Chemistry. 81 (2009) 7271-7280.
[24]C.L. Lee, C.C. Wan, Y.Y. Wang, Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant. Advanced Functional Materials. 11 (2001) 344-347.
[25]C.L. Lee, Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, J.C. Oung, Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications. 7 (2005) 453-458.
[26]K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science. 5 (2010) 1246-1301.
[27]F. Largeaud, K.B. Kokoh, B. Beden, C. Lamy, On the electrochemical reactivity of anomers: Electrocatalytic oxidation of α- and β-d-glucose on platinum electrodes in acid and basic media. Journal of Electroanalytical Chemistry. 397 (1995) 261-269.
[28]R. Wilson, A.P.F. Turner, Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics. 7 (1992) 165-185.
[29]Y. Myung, D.M. Jang, Y.J. Cho, H.S. Kim, J. Park, J.-U. Kim, Y. Choi, C.J. Lee, Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures. The Journal of Physical Chemistry C. 113 (2009) 1251-1259.
[30]K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Materials Science & Engineering C-Materials for Biological Applications. 41 (2014) 100-118.
[31]A.P.F. Turner, B.N. Chen, S.A. Piletsky, In vitro diagnostics in diabetes: Meeting the challenge. Clinical Chemistry. 45 (1999) 1596-1601.
[32]Z.G. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H.Q. Xie, F. Moussy, W.I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors. 12 (2012) 5996-6022.
[33]S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta. 556 (2006) 46-57.
[34]K.B. Kokoh, J.M. Léger, B. Beden, C. Lamy, “On line” chromatographic analysis of the products resulting from the electrocatalytic oxidation of d-glucose on Pt, Au and adatoms modified Pt electrodes—part I. Acid and neutral media. Electrochimica Acta. 37 (1992) 1333-1342.
[35]K.D. Popović, N.M. Marković, A.V. Tripković, R.R. Adžić, Structural effects in electrocatalysis: Oxidation of d-glucose on single crystal platinum electrodes in alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 313 (1991) 181-199.
[36]M.F.L. de Mele, H.A. Videla, A.J. Arvía, Potentiodynamic study of glucose electro‐oxidation at bright platinum electrodes. Journal of the Electrochemical Society. 129 (1982) 2207-2213.
[37]M.F.L. Demele, H.A. Videla, A.J. Arvia, Potentiodynamic study of glucose electrooxidation at bright platinum-electrodes. Journal of the Electrochemical Society. 129 (1982) 2207-2213.
[38]K.Đ. Popović, A.V. Tripković, R.R. Adžić, Oxidation of d-glucose on single-crystal platinum electrodes: A mechanistic study. Journal of Electroanalytical Chemistry. 339 (1992) 227-245.
[39]M.F.L. de Mele, H.A. Videla, A.J. Arvía, The electrooxidation of glucose on platinum electrodes in buffered media. Bioelectrochemistry and Bioenergetics. 10 (1983) 239-249.
[40]M.Q. Guo, H.S. Hong, X.N. Tang, H.D. Fang, X.H. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochimica Acta. 63 (2012) 1-8.
[41]X. Zhou, X. Zheng, R. Lv, D. Kong, Q. Li, Electrodeposition of platinum on poly(glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection. Electrochimica Acta. 107 (2013) 164-169.
[42]X. Zhang, K.-Y. Chan, J.-K. You, Z.-G. Lin, A.C.C. Tseung, Partial oxidation of glucose by a Pt|WO3 electrode. Journal of Electroanalytical Chemistry. 430 (1997) 147-153.
[43]H.F. Cui, J.S. Ye, X. Liu, W.D. Zhang, F.S. Sheu, Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: A strong electrocatalyst for glucose oxidation. Nanotechnology. 17 (2006) 2334-2339.
[44]Y. Bai, Y. Sun, C. Sun, Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosensors and Bioelectronics. 24 (2008) 579-585.
[45]M. Sakamoto, K. Takamura, Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose. Bioelectrochemistry and Bioenergetics. 9 (1982) 571-582.
[46]J. Wang, D.F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Analytical Chemistry. 80 (2008) 997-1004.
[47]L.M. Lu, H.B. Li, F. Qu, X.B. Zhang, G.L. Shen, R.Q. Yu, In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosensors and Bioelectronics. 26 (2011) 3500-3504.
[48]J.S. Ye, C.W. Chen, C.L. Lee, Pd nanocube as non-enzymatic glucose sensor. Sensors and Actuators B: Chemical. 208 (2015) 569-574.
[49]P. Parpot, N. Nunes, A.P. Bettencourt, Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: Structure–reactivity relationship. Journal of Electroanalytical Chemistry. 596 (2006) 65-73.
[50]M.W. Hsiao, R.R. Adzic, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. Journal of the Electrochemical Society. 143 (1996) 759-767.
[51]Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 196 (1985) 127-144.
[52]M.W. Hsiao, R.R. Adzic, E.B. Yeager, The effects of adsorbed anions on the oxidation of d-glucose on gold single crystal electrodes. Electrochimica Acta. 37 (1992) 357-363.
[53]H. Quan, S.U. Park, J. Park, Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes. Electrochimica Acta. 55 (2010) 2232-2237.
[54]M. Fleischmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 31 (1971) 39-49.
[55]K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors and Actuators B: Chemical. 147 (2010) 642-652.
[56]Y. Zhang, L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosensors and Bioelectronics. 31 (2012) 426-432.
[57]F. Huang, Y. Zhong, J. Chen, S. Li, Y. Li, F. Wang, S. Feng, Nonenzymatic glucose sensor based on three different cuo nanomaterials. Analytical Methods. 5 (2013) 3050-3055.
[58]X. Gao, L.Y. Jin, Q. Wu, Z.C. Chen, X.F. Lin, A nonenzymatic hydrogen peroxide sensor based on silver nanowires and chitosan film. Electroanalysis. 24 (2012) 1771-1777.
[59]T. Gan, S.S. Hu, Electrochemical sensors based on graphene materials. Microchim Acta. 175 (2011) 1-19.
[60]H. Mei, Q. Sheng, H. Wu, X. Zhang, S. Wang, Q. Xia, Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support. Microchim Acta. (2015) 1-7.
[61]C.C. Yang, H.R. Chen, C.L. Lee, Sub 10-nm Pd nanocubes and their coating with multi-armed Pt shells: Facile synthesis and catalysis of alkaline oxygen reduction. Journal of the Electrochemical Society. 162 (2015) H512-H517.
[62]H.C. Peng, S. Xie, J. Park, X. Xia, Y. Xia, Quantitative analysis of the coverage density of Br– ions on Pd{100} facets and its role in controlling the shape of Pd nanocrystals. Journal of the American Chemical Society. 135 (2013) 3780-3783.
[63]Y. Zhang, Q. Huang, G. Chang, Z. Zhang, T. Xia, H. Shu, Y. He, Controllable synthesis of palladium nanocubes/reduced graphene oxide composites and their enhanced electrocatalytic performance. Journal of Power Sources. 280 (2015) 422-429.
[64]Y.W. Lee, J.Y. Lee, D.H. Kwak, E.T. Hwang, J.I. Sohn, K.W. Park, Pd@Pt core–shell nanostructures for improved electrocatalytic activity in methanol oxidation reaction. Applied Catalysis B: Environmental. 179 (2015) 178-184.
[65]L. Liu, G. Samjeske, S.I. Nagamatsu, O. Sekizawa, K. Nagasawa, S. Takao, Y. Imaizumi, T. Yamamoto, T. Uruga, Y. Iwasawa, Enhanced oxygen reduction reaction activity and characterization of Pt–Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media. The Journal of Physical Chemistry C. 116 (2012) 23453-23464.
[66]C.L. Lee, C.C. Yang, C.R. Liu, Z.T. Liu, J.S. Ye, Pt-coated Pd nanocubes as catalysts for alkaline oxygen reduction activity. Journal of Power Sources. 268 (2014) 712-717.
[67]X.H. Xia, S.F. Xie, M.C. Liu, H.C. Peng, N. Lu, J.G. Wang, M.J. Kim, Y.N. Xia, On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proceedings of the National Academy of Sciences of the United States of America. 110 (2013) 6669-6673.
[68]E.A. Baranova, N. Miles, P.H.J. Mercier, Y. Le Page, B. Patarachao, Formic acid electro-oxidation on carbon supported PdxPt1-x (0 >= x >= 1) nanoparticles synthesized via modified polyol method. Electrochimica Acta. 55 (2010) 8182-8188.
[69]K. Wu, Q. Zhang, D.M. Sun, X.S. Zhu, Y. Chen, T.H. Lu, Y.W. Tang, Graphene-supported Pd-Pt alloy nanoflowers: In situ growth and their enhanced electrocatalysis towards methanol oxidation. International Journal of Hydrogen Energy. 40 (2015) 6530-6537.
[70]L. Zhong, A. Chokkalingam, W.S. Cha, K.S. Lakhi, X.Y. Su, G. Lawrence, A. Vinu, Pd nanoparticles embedded in mesoporous carbon: A highly efficient catalyst for Suzuki-Miyaura reaction. Catalysis Today. 243 (2015) 195-198.
[71]A. Mosquera, D. Horwat, L. Vazquez, A. Gutierrez, A. Erko, A. Anders, J. Andersson, J.L. Endrino, Thermal decomposition and fractal properties of sputter-deposited platinum oxide thin films. Journal of Materials Research. 27 (2012) 829-836.
[72]J. Yang, X. Chen, X. Yang, J.Y. Ying, Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy & Environmental Science. 5 (2012) 8976-8981.
[73]Z. Ozturk, F. Sen, S. Sen, G. Gokagac, The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. Journal of Materials Science. 47 (2012) 8134-8144.
[74]J. Yang, J.Y. Lee, Q. Zhang, W. Zhou, Z. Liu, Carbon-supported pseudo-core–shell Pd–Pt nanoparticles for ORR with and without methanol. Journal of the Electrochemical Society. 155 (2008) B776-B781.
[75]J. Xu, L. Ouyang, G.J. Da, Q.Q. Song, X.J. Yang, Y.-F. Han, Pt promotional effects on Pd–Pt alloy catalysts for hydrogen peroxide synthesis directly from hydrogen and oxygen. Journal of Catalysis. 285 (2012) 74-82.
[76]W.X. Niu, Z.Y. Li, L.H. Shi, X.Q. Liu, H.J. Li, S. Han, J. Chen, G.B. Xu, Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Crystal Growth & Design. 8 (2008) 4440-4444.
[77]Y. Zhang, M.E. Grass, J.N. Kuhn, F. Tao, S.E. Habas, W. Huang, P. Yang, G.A. Somorjai, Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. Journal of the American Chemical Society. 130 (2008) 5868-5869.
[78]Y. Wook Lee, M. Kim, S. Woo Han, Shaping pd nanocatalysts through the control of reaction sequence. Chemical Communications. 46 (2010) 1535-1537.
[79]M. Jiang, B. Lim, J. Tao, P.H.C. Camargo, C. Ma, Y. Zhu, Y. Xia, Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale. 2 (2010) 2406-2411.
[80]Y. Kim, Y.W. Lee, M. Kim, S.W. Han, One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies. Chemistry – A European Journal. 20 (2014) 7901-7905.
[81]N.M. Markovic, P.N. Ross, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports. 45 (2002) 121-229.
[82]R.V. Bucur, Structure of the voltammograms of the platinum-black electrodes: Derivative voltammetry and data fitting analysis. Electrochimica Acta. 129 (2014) 76-84.
[83]C.H. Hamnett, A. Hamnett, W. Vielstich, Electrochemistry, 2nd ed. Wiley-vch. (2007)
[84]Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochimica Acta. 54 (2009) 2203-2208.
[85]N. Hoshi, M. Nakamura, N. Maki, S. Yamaguchi, A. Kitajima, Structural effects on voltammograms of the low index planes of palladium and Pd(S)-[n(1 0 0) × (1 1 1)] surfaces in alkaline solution. Journal of Electroanalytical Chemistry. 624 (2008) 134-138.
[86]H. Wang, C.W. Xu, F.L. Cheng, M. Zhang, S.Y. Wang, S.P. Jiang, Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochemistry Communications. 10 (2008) 1575-1578.
[87]T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. Journal of the Electrochemical Society. 145 (1998) 2354-2358.
[88]T.D. Tran, S.H. Langer, Electrochemical measurement of platinum surface-areas on particulate conductive supports. Analytical Chemistry. 65 (1993) 1805-1807.
[89]J.H. Yuan, K. Wang, X.H. Xia, Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Advanced Functional Materials. 15 (2005) 803-809.
[90]L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed pt nanoparticles supported on carbon nanotubes. Talanta. 72 (2007) 819-824.
[91]Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications. 9 (2007) 981-988.
[92]Z.H. Ibupoto, A. Nafady, R.A. Soomro, Sirajuddin, S.T. Hussain Sherazi, M.I. Abro, M. Willander, Glycine-assisted synthesis of Nio hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. Rsc Advances. 5 (2015) 18773-18781.
[93]E. Desimoni, B. Brunetti, Presenting analytical performances of electrochemical sensors. Some suggestions. Electroanalysis. 25 (2013) 1645-1651.
[94]L.H. Li, W.D. Zhang, J.S. Ye, Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis. 20 (2008) 2212-2216.
[95]Y.X. Liu, Y. Ding, Y.C. Zhang, Y. Lei, Pt-Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sensors and Actuators B-Chemical. 171 (2012) 954-961.
[96]L.H. Li, W.D. Zhang, Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta. 163 (2008) 305-311.
[97]C. Su, C. Zhang, G.Q. Lu, C.N. Ma, Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis. 22 (2010) 1901-1905.
[98]Y. Liu, Y.Q. Dong, C.X. Guo, Z.M. Cui, L.X. Zheng, C.M. Li, Protein-directed in situ synthesis of gold nanoparticles on reduced graphene oxide modified electrode for nonenzymatic glucose sensing. Electroanalysis. 24 (2012) 2348-2353.
[99]J.P. Wang, Z.H. Wang, D.Y. Zhao, C.X. Xu, Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Analytica Chimica Acta. 832 (2014) 34-43.
[100] Q.F. Yi, W.Q. Yu, F.J. Niu, Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation. Electroanalysis. 22 (2010) 556-563.
[101] Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical. 134 (2008) 471-476.
[102] Y. Yu, Q.B. Zhang, B. Liu, J.Y. Lee, Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral au templates. Journal of the American Chemical Society. 132 (2010) 18258-18265.
[103] W. Niu, L. Zhang, G. Xu, Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano. 4 (2010) 1987-1996.
[104] C.L. Lee, H.P. Chiou, Methanol-tolerant Pd nanocubes for catalyzing oxygen reduction reaction in H2SO4 electrolyte. Applied Catalysis B: Environmental. 117–118 (2012) 204-211.
[105] C.L. Lee, H.P. Chiou, C.R. Liu, Palladium nanocubes enclosed by (100) planes as electrocatalyst for alkaline oxygen electroreduction. International Journal of Hydrogen Energy. 37 (2012) 3993-3997.
[106] G. Collins, M. Schmidt, G.P. McGlacken, C. O'Dwyer, J.D. Holmes, Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals. Journal of Physical Chemistry C. 118 (2014) 6522-6530.
[107] X.W. Zhang, H.J. Yin, J.F. Wang, L. Chang, Y. Gao, W. Liu, Z.Y. Tang, Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale. 5 (2013) 8392-8397.
[108] D.M. Shuai, D.C. McCalman, J.K. Choe, J.R. Shapley, W.F. Schneider, C.J. Werth, Structure sensitivity study of waterborne contaminant hydrogenation using shape- and size-controlled Pd nanoparticles. ACS Catalysis. 3 (2013) 453-463.
[109] X.Q. Huang, Y.J. Li, H.L. Zhou, X.F. Duan, Y. Huang, Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Letters. 12 (2012) 4265-4270.
[110] B. Lim, M.J. Jiang, J. Tao, P.H.C. Camargo, Y.M. Zhu, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Advanced Functional Materials. 19 (2009) 189-200.
[111] M. Kim, Y. Kim, J.W. Hong, S. Ahn, W.Y. Kim, S.W. Han, The facet-dependent enhanced catalytic activity of Pd nanocrystals. Chemical Communications. 50 (2014) 9454-9457.
[112] S.Y. Liu, Y.T. Shen, C.Y. Chiu, S. Rej, P.H. Lin, Y.C. Tsao, M.H. Huang, Direct synthesis of palladium nanocrystals in aqueous solution with systematic shape evolution. Langmuir. 31 (2015) 6538-6545.
[113] L. Zhang, W.X. Niu, G.B. Xu, Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today. 7 (2012) 586-605.
[114] W.X. Niu, L. Zhang, G.B. Xu, Seed-mediated growth of noble metal nanocrystals: Crystal growth and shape control. Nanoscale. 5 (2013) 3172-3181.
[115] M.H. Shao, T. Yu, J.H. Odell, M.S. Jin, Y.N. Xia, Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chemical Communications. 47 (2011) 6566-6568.
[116] L.L. Fang, Q.A. Tao, M.F. Li, L.W. Liao, D. Chen, Y.X. Chen, Determination of the real surface area of palladium electrode. Chinese Journal of Chemical Physics. 23 (2010) 543-548.
[117] A. Cuesta, L.A. Kibler, D.M. Kolb, A method to prepare single crystal electrodes of reactive metals: Application to Pd(hkl). Journal of Electroanalytical Chemistry. 466 (1999) 165-168.
[118] M. Shao, J. Odell, M. Humbert, T. Yu, Y. Xia, Electrocatalysis on shape-controlled palladium nanocrystals: Oxygen reduction reaction and formic acid oxidation. The Journal of Physical Chemistry C. 117 (2013) 4172-4180.
[119] C.C. Chen, C.L. Lin, L.C. Chen, Functionalized carbon nanomaterial supported palladium nano-catalysts for electrocatalytic glucose oxidation reaction. Electrochimica Acta. 152 (2015) 408-416.
[120] L. Yan, A. Brouzgou, Y. Meng, M. Xiao, P. Tsiakaras, S. Song, Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental. 150–151 (2014) 268-274.
[121] C.H. Wang, S.W. Lee, C.J. Tseng, J.W. Wu, I.M. Hung, C.M. Tseng, J.K. Chang, Nanocrystalline Pd/carbon nanotube composites synthesized using supercritical fluid for superior glucose sensing performance. Journal of Alloys and Compounds. 615 (2014) S496-S500.
[122] A.N. Zhong, X.L. Luo, L.P. Chen, S.S. Wei, Y.H. Liang, X.C. Li, Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta. 182 (2015) 1197-1204.
[123] X.Y. Xiao, G.A. Montano, T.L. Edwards, C.M. Washburn, S.M. Brozik, D.R. Wheeler, D.B. Burckel, R. Polsky, Lithographically defined 3D nanoporous nonenzymatic glucose sensors. Biosensors & Bioelectronics. 26 (2011) 3641-3646.
[124] D.Y. Zhao, Z.H. Wang, J.P. Wang, C.X. Xu, The nanoporous PdCr alloy as a nonenzymatic electrochemical sensor for hydrogen peroxide and glucose. Journal of Materials Chemistry B. 2 (2014) 5195-5201.
[125] G. Chang, H.H. Shu, K. Ji, M. Oyama, X. Liu, Y.B. He, Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Applied Surface Science. 288 (2014) 524-529.
[126] L. Han, S. Zhang, L.H. Han, D.P. Yang, C.T. Hou, A.H. Liu, Porous gold cluster film prepared from Au@BSA microspheres for electrochemical nonenzymatic glucose sensor. Electrochimica Acta. 138 (2014) 109-114.
[127] F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru,Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosensors and Bioelectronics. 24 (2009) 3481-3486.
[128] Z. Dai, G. Shao, J. Hong, J. Bao, J. Shen, Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous zno nanostructure for a glucose biosensor. Biosensors and Bioelectronics. 24 (2009) 1286-1291.
[129] E. Shoji, M.S. Freund, Potentiometric sensors based on the inductive effect on the pK(a) of poly(aniline): A nonenzymatic glucose sensor. Journal of the American Chemical Society. 123 (2001) 3383-3384.
[130] B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: Identification of reactive intermediates and reaction products. Electrochimica Acta. 41 (1996) 701-709.
[131] I.T. Bae, E. Yeager, X. Xing, C.C. Liu, In situ infrared studies of glucose oxidation on platinum in an alkaline medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 309 (1991) 131-145.
[132] S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Analytical Chemistry. 75 (2003) 3046-3049.
[133] H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, P.J. Gao, Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. Journal of Physical Chemistry C. 112 (2008) 14781-14785.
[134] X. Bo, L. Guo, Simple synthesis of macroporous carbon–graphene composites and their use as a support for Pt electrocatalysts. Electrochimica Acta. 90 (2013) 283-290.
[135] D. Rathod, C. Dickinson, D. Egan, E. Dempsey, Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing. Sensors and Actuators B: Chemical. 143 (2010) 547-554.
[136] S. Jagannathan, T. Liu, S. Kumar, Pore size control and electrochemical capacitor behavior of chemically activated polyacrylonitrile – carbon nanotube composite films. Composites Science and Technology. 70 (2010) 593-598.
[137] E.J. Ra, E. Raymundo-Piñero, Y.H. Lee, F. Béguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon. 47 (2009) 2984-2992.
[138] C.L. Lee, Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, J.C. Oung, Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications. 7 (2005) 453-458.
[139] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work functions and surface functional groups of multiwall carbon nanotubes. Journal of Physical Chemistry B. 103 (1999) 8116-8121.
[140] S.M. Andersen, R. Dhiman, E. Skou, Chemistry of carbon polymer composite electrode - An x-ray photoelectron spectroscopy study. Journal of Power Sources. 274 (2015) 1217-1223.
[141] A. Achour, S. Vizireanu, G. Dinescu, L. Le Brizoual, M.A. Djouadi, M. Boujtita, Electrochemical anodic oxidation of nitrogen doped carbon nanowall films: X-ray photoelectron and micro-raman spectroscopy study. Applied Surface Science. 273 (2013) 49-57.
[142] C.W. Chen, Z.T. Liu, Y.Z. Zhang, J.S. Ye, C.L. Lee, Sonoelectrochemical intercalation and exfoliation for the preparation of defective graphene sheets and their application as nonenzymatic H2O2 sensors and oxygen reduction catalysts. Rsc Advances. 5 (2015) 21988-21998.
[143] H.X. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Analytical Chemistry. 73 (2001) 915-920.
[144] H.W. Chang, Y.C. Tsai, C.W. Cheng, C.Y. Lin, P.H. Wu, Preparation of platinum/carbon nanotube in aqueous solution by femtosecond laser for non-enzymatic glucose determination. Sensors and Actuators B-Chemical. 183 (2013) 34-39.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top