|  | 
[1] C.D. Mathers, D. Loncar, Projections of global mortality and burden of disease from 2002 to 2030. Plos Medicine. 3 (2006)[2] G. Danaei, M.M. Finucane, Y. Lu, G.M. Singh, M.J. Cowan, C.J. Paciorek, J.K. Lin, F. Farzadfar, Y.H. Khang, G.A. Stevens, M. Rao, M.K. Ali, L.M. Riley, C.A. Robinson, M. Ezzati, C. Global Burden Metab Risk Factors, National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 378 (2011) 31-40.
 [3] E.A. Hu, A. Pan, V. Malik, Q. Sun, White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. British Medical Journal. 344 (2012)
 [4] S.R. Lee, Y.T. Lee, K. Sawada, H. Takao, M. Ishida, Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes. Biosensors and Bioelectronics. 24 (2008) 410-414.
 [5] Y.M. Uang, T.C. Chou, Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. Biosensors and Bioelectronics. 19 (2003) 141-147.
 [6] J. Chen, C.X. Zhao, M.M. Zhi, K. Wang, L. Deng, G. Xu, Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochimica Acta. 66 (2012) 133-138.
 [7] I. Becerik, F. Kadirgan, The electrocatalytic properties of palladium electrodes for the oxidation of d-glucose in alkaline medium. Electrochimica Acta. 37 (1992) 2651-2657.
 [8] D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. International Journal of Hydrogen Energy. 37 (2012) 4678-4684.
 [9] X.M. Chen, Z.J. Lin, D.J. Chen, T.T. Jia, Z.M. Cai, X.R. Wang, X. Chen, G.N. Chen, M. Oyama, Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosensors and Bioelectronics. 25 (2010) 1803-1808.
 [10]S. Xie, S.I. Choi, N. Lu, L.T. Roling, J.A. Herron, L. Zhang, J. Park, J. Wang, M.J. Kim, Z. Xie, M. Mavrikakis, Y. Xia, Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Letters. 14 (2014) 3570-3576.
 [11]X. Yang, Y. Wang, Y. Liu, X. Jiang, A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochimica Acta. 108 (2013) 39-44.
 [12]X. Chen, H. Pan, H. Liu, M. Du, Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochimica Acta. 56 (2010) 636-643.
 [13]L.Y. Chen, T. Fujita, Y. Ding, M.W. Chen, A three-dimensional gold-decorated nanoporous copper core–shell composite for electrocatalysis and nonenzymatic biosensing. Advanced Functional Materials. 20 (2010) 2279-2285.
 [14]T.H.M. Housmans, A.H. Wonders, M.T.M. Koper, Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study. Journal of Physical Chemistry B. 110 (2006) 10021-10031.
 [15]J. Solla Gullon, F.J. Vidal Iglesias, A. Lopez Cudero, E. Garnier, J.M. Feliu, A. Aldaza, Shape-dependent electrocatalysis: Methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Physical Chemistry Chemical Physics. 10 (2008) 3689-3698.
 [16]S. Kondo, M. Nakamura, N. Maki, N. Hoshi, Active sites for the oxygen reduction reaction on the low and high index planes of palladium. Journal of Physical Chemistry C. 113 (2009) 12625-12628.
 [17]K.D. Popovic, N.M. Markovic, A.V. Tripkovic, R.R. Adzic, Structural effects in electrocatalysis - oxidation of d-glucose on single-crystal platinum-electrodes in alkaline-solution. Journal of Electroanalytical Chemistry. 313 (1991) 181-199.
 [18]J. Wang, J. Gong, Y. Xiong, J. Yang, Y. Gao, Y. Liu, X. Lu, Z. Tang, Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chemical Communications. 47 (2011) 6894-6896.
 [19]Q. Xu, L. Yin, C. Hou, X. Liu, X. Hu, Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing. Sensors and Actuators B: Chemical. 173 (2012) 716-723.
 [20]H. Qiu, X. Huang, Effects of pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. Journal of Electroanalytical Chemistry. 643 (2010) 39-45.
 [21]Z.X. Cai, C.C. Liu, G.H. Wu, X.M. Chen, X. Chen, Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose. Electrochimica Acta. 112 (2013) 756-762.
 [22]S. Badhulika, R.K. Paul, Rajesh, T. Terse, A. Mulchandani, Nonenzymatic glucose sensor based on platinum nanoflowers decorated multiwalled carbon nanotubes-graphene hybrid electrode. Electroanalysis. 26 (2014) 103-108.
 [23]L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Nonenzymatic electrochemical detection of glucose based on palladium−single-walled carbon nanotube hybrid nanostructures. Analytical Chemistry. 81 (2009) 7271-7280.
 [24]C.L. Lee, C.C. Wan, Y.Y. Wang, Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant. Advanced Functional Materials. 11 (2001) 344-347.
 [25]C.L. Lee, Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, J.C. Oung, Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications. 7 (2005) 453-458.
 [26]K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science. 5 (2010) 1246-1301.
 [27]F. Largeaud, K.B. Kokoh, B. Beden, C. Lamy, On the electrochemical reactivity of anomers: Electrocatalytic oxidation of α- and β-d-glucose on platinum electrodes in acid and basic media. Journal of Electroanalytical Chemistry. 397 (1995) 261-269.
 [28]R. Wilson, A.P.F. Turner, Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics. 7 (1992) 165-185.
 [29]Y. Myung, D.M. Jang, Y.J. Cho, H.S. Kim, J. Park, J.-U. Kim, Y. Choi, C.J. Lee, Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures. The Journal of Physical Chemistry C. 113 (2009) 1251-1259.
 [30]K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Materials Science & Engineering C-Materials for Biological Applications. 41 (2014) 100-118.
 [31]A.P.F. Turner, B.N. Chen, S.A. Piletsky, In vitro diagnostics in diabetes: Meeting the challenge. Clinical Chemistry. 45 (1999) 1596-1601.
 [32]Z.G. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H.Q. Xie, F. Moussy, W.I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors. 12 (2012) 5996-6022.
 [33]S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta. 556 (2006) 46-57.
 [34]K.B. Kokoh, J.M. Léger, B. Beden, C. Lamy, “On line” chromatographic analysis of the products resulting from the electrocatalytic oxidation of d-glucose on Pt, Au and adatoms modified Pt electrodes—part I. Acid and neutral media. Electrochimica Acta. 37 (1992) 1333-1342.
 [35]K.D. Popović, N.M. Marković, A.V. Tripković, R.R. Adžić, Structural effects in electrocatalysis: Oxidation of d-glucose on single crystal platinum electrodes in alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 313 (1991) 181-199.
 [36]M.F.L. de Mele, H.A. Videla, A.J. Arvía, Potentiodynamic study of glucose electro‐oxidation at bright platinum electrodes. Journal of the Electrochemical Society. 129 (1982) 2207-2213.
 [37]M.F.L. Demele, H.A. Videla, A.J. Arvia, Potentiodynamic study of glucose electrooxidation at bright platinum-electrodes. Journal of the Electrochemical Society. 129 (1982) 2207-2213.
 [38]K.Đ. Popović, A.V. Tripković, R.R. Adžić, Oxidation of d-glucose on single-crystal platinum electrodes: A mechanistic study. Journal of Electroanalytical Chemistry. 339 (1992) 227-245.
 [39]M.F.L. de Mele, H.A. Videla, A.J. Arvía, The electrooxidation of glucose on platinum electrodes in buffered media. Bioelectrochemistry and Bioenergetics. 10 (1983) 239-249.
 [40]M.Q. Guo, H.S. Hong, X.N. Tang, H.D. Fang, X.H. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochimica Acta. 63 (2012) 1-8.
 [41]X. Zhou, X. Zheng, R. Lv, D. Kong, Q. Li, Electrodeposition of platinum on poly(glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection. Electrochimica Acta. 107 (2013) 164-169.
 [42]X. Zhang, K.-Y. Chan, J.-K. You, Z.-G. Lin, A.C.C. Tseung, Partial oxidation of glucose by a Pt|WO3 electrode. Journal of Electroanalytical Chemistry. 430 (1997) 147-153.
 [43]H.F. Cui, J.S. Ye, X. Liu, W.D. Zhang, F.S. Sheu, Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: A strong electrocatalyst for glucose oxidation. Nanotechnology. 17 (2006) 2334-2339.
 [44]Y. Bai, Y. Sun, C. Sun, Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosensors and Bioelectronics. 24 (2008) 579-585.
 [45]M. Sakamoto, K. Takamura, Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose. Bioelectrochemistry and Bioenergetics. 9 (1982) 571-582.
 [46]J. Wang, D.F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Analytical Chemistry. 80 (2008) 997-1004.
 [47]L.M. Lu, H.B. Li, F. Qu, X.B. Zhang, G.L. Shen, R.Q. Yu, In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosensors and Bioelectronics. 26 (2011) 3500-3504.
 [48]J.S. Ye, C.W. Chen, C.L. Lee, Pd nanocube as non-enzymatic glucose sensor. Sensors and Actuators B: Chemical. 208 (2015) 569-574.
 [49]P. Parpot, N. Nunes, A.P. Bettencourt, Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: Structure–reactivity relationship. Journal of Electroanalytical Chemistry. 596 (2006) 65-73.
 [50]M.W. Hsiao, R.R. Adzic, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. Journal of the Electrochemical Society. 143 (1996) 759-767.
 [51]Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 196 (1985) 127-144.
 [52]M.W. Hsiao, R.R. Adzic, E.B. Yeager, The effects of adsorbed anions on the oxidation of d-glucose on gold single crystal electrodes. Electrochimica Acta. 37 (1992) 357-363.
 [53]H. Quan, S.U. Park, J. Park, Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes. Electrochimica Acta. 55 (2010) 2232-2237.
 [54]M. Fleischmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 31 (1971) 39-49.
 [55]K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors and Actuators B: Chemical. 147 (2010) 642-652.
 [56]Y. Zhang, L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosensors and Bioelectronics. 31 (2012) 426-432.
 [57]F. Huang, Y. Zhong, J. Chen, S. Li, Y. Li, F. Wang, S. Feng, Nonenzymatic glucose sensor based on three different cuo nanomaterials. Analytical Methods. 5 (2013) 3050-3055.
 [58]X. Gao, L.Y. Jin, Q. Wu, Z.C. Chen, X.F. Lin, A nonenzymatic hydrogen peroxide sensor based on silver nanowires and chitosan film. Electroanalysis. 24 (2012) 1771-1777.
 [59]T. Gan, S.S. Hu, Electrochemical sensors based on graphene materials. Microchim Acta. 175 (2011) 1-19.
 [60]H. Mei, Q. Sheng, H. Wu, X. Zhang, S. Wang, Q. Xia, Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support. Microchim Acta. (2015) 1-7.
 [61]C.C. Yang, H.R. Chen, C.L. Lee, Sub 10-nm Pd nanocubes and their coating with multi-armed Pt shells: Facile synthesis and catalysis of alkaline oxygen reduction. Journal of the Electrochemical Society. 162 (2015) H512-H517.
 [62]H.C. Peng, S. Xie, J. Park, X. Xia, Y. Xia, Quantitative analysis of the coverage density of Br– ions on Pd{100} facets and its role in controlling the shape of Pd nanocrystals. Journal of the American Chemical Society. 135 (2013) 3780-3783.
 [63]Y. Zhang, Q. Huang, G. Chang, Z. Zhang, T. Xia, H. Shu, Y. He, Controllable synthesis of palladium nanocubes/reduced graphene oxide composites and their enhanced electrocatalytic performance. Journal of Power Sources. 280 (2015) 422-429.
 [64]Y.W. Lee, J.Y. Lee, D.H. Kwak, E.T. Hwang, J.I. Sohn, K.W. Park, Pd@Pt core–shell nanostructures for improved electrocatalytic activity in methanol oxidation reaction. Applied Catalysis B: Environmental. 179 (2015) 178-184.
 [65]L. Liu, G. Samjeske, S.I. Nagamatsu, O. Sekizawa, K. Nagasawa, S. Takao, Y. Imaizumi, T. Yamamoto, T. Uruga, Y. Iwasawa, Enhanced oxygen reduction reaction activity and characterization of Pt–Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media. The Journal of Physical Chemistry C. 116 (2012) 23453-23464.
 [66]C.L. Lee, C.C. Yang, C.R. Liu, Z.T. Liu, J.S. Ye, Pt-coated Pd nanocubes as catalysts for alkaline oxygen reduction activity. Journal of Power Sources. 268 (2014) 712-717.
 [67]X.H. Xia, S.F. Xie, M.C. Liu, H.C. Peng, N. Lu, J.G. Wang, M.J. Kim, Y.N. Xia, On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proceedings of the National Academy of Sciences of the United States of America. 110 (2013) 6669-6673.
 [68]E.A. Baranova, N. Miles, P.H.J. Mercier, Y. Le Page, B. Patarachao, Formic acid electro-oxidation on carbon supported PdxPt1-x (0 >= x >= 1) nanoparticles synthesized via modified polyol method. Electrochimica Acta. 55 (2010) 8182-8188.
 [69]K. Wu, Q. Zhang, D.M. Sun, X.S. Zhu, Y. Chen, T.H. Lu, Y.W. Tang, Graphene-supported Pd-Pt alloy nanoflowers: In situ growth and their enhanced electrocatalysis towards methanol oxidation. International Journal of Hydrogen Energy. 40 (2015) 6530-6537.
 [70]L. Zhong, A. Chokkalingam, W.S. Cha, K.S. Lakhi, X.Y. Su, G. Lawrence, A. Vinu, Pd nanoparticles embedded in mesoporous carbon: A highly efficient catalyst for Suzuki-Miyaura reaction. Catalysis Today. 243 (2015) 195-198.
 [71]A. Mosquera, D. Horwat, L. Vazquez, A. Gutierrez, A. Erko, A. Anders, J. Andersson, J.L. Endrino, Thermal decomposition and fractal properties of sputter-deposited platinum oxide thin films. Journal of Materials Research. 27 (2012) 829-836.
 [72]J. Yang, X. Chen, X. Yang, J.Y. Ying, Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy & Environmental Science. 5 (2012) 8976-8981.
 [73]Z. Ozturk, F. Sen, S. Sen, G. Gokagac, The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. Journal of Materials Science. 47 (2012) 8134-8144.
 [74]J. Yang, J.Y. Lee, Q. Zhang, W. Zhou, Z. Liu, Carbon-supported pseudo-core–shell Pd–Pt nanoparticles for ORR with and without methanol. Journal of the Electrochemical Society. 155 (2008) B776-B781.
 [75]J. Xu, L. Ouyang, G.J. Da, Q.Q. Song, X.J. Yang, Y.-F. Han, Pt promotional effects on Pd–Pt alloy catalysts for hydrogen peroxide synthesis directly from hydrogen and oxygen. Journal of Catalysis. 285 (2012) 74-82.
 [76]W.X. Niu, Z.Y. Li, L.H. Shi, X.Q. Liu, H.J. Li, S. Han, J. Chen, G.B. Xu, Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Crystal Growth & Design. 8 (2008) 4440-4444.
 [77]Y. Zhang, M.E. Grass, J.N. Kuhn, F. Tao, S.E. Habas, W. Huang, P. Yang, G.A. Somorjai, Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. Journal of the American Chemical Society. 130 (2008) 5868-5869.
 [78]Y. Wook Lee, M. Kim, S. Woo Han, Shaping pd nanocatalysts through the control of reaction sequence. Chemical Communications. 46 (2010) 1535-1537.
 [79]M. Jiang, B. Lim, J. Tao, P.H.C. Camargo, C. Ma, Y. Zhu, Y. Xia, Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale. 2 (2010) 2406-2411.
 [80]Y. Kim, Y.W. Lee, M. Kim, S.W. Han, One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies. Chemistry – A European Journal. 20 (2014) 7901-7905.
 [81]N.M. Markovic, P.N. Ross, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports. 45 (2002) 121-229.
 [82]R.V. Bucur, Structure of the voltammograms of the platinum-black electrodes: Derivative voltammetry and data fitting analysis. Electrochimica Acta. 129 (2014) 76-84.
 [83]C.H. Hamnett, A. Hamnett, W. Vielstich, Electrochemistry, 2nd ed. Wiley-vch. (2007)
 [84]Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochimica Acta. 54 (2009) 2203-2208.
 [85]N. Hoshi, M. Nakamura, N. Maki, S. Yamaguchi, A. Kitajima, Structural effects on voltammograms of the low index planes of palladium and Pd(S)-[n(1 0 0) × (1 1 1)] surfaces in alkaline solution. Journal of Electroanalytical Chemistry. 624 (2008) 134-138.
 [86]H. Wang, C.W. Xu, F.L. Cheng, M. Zhang, S.Y. Wang, S.P. Jiang, Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochemistry Communications. 10 (2008) 1575-1578.
 [87]T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. Journal of the Electrochemical Society. 145 (1998) 2354-2358.
 [88]T.D. Tran, S.H. Langer, Electrochemical measurement of platinum surface-areas on particulate conductive supports. Analytical Chemistry. 65 (1993) 1805-1807.
 [89]J.H. Yuan, K. Wang, X.H. Xia, Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Advanced Functional Materials. 15 (2005) 803-809.
 [90]L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed pt nanoparticles supported on carbon nanotubes. Talanta. 72 (2007) 819-824.
 [91]Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications. 9 (2007) 981-988.
 [92]Z.H. Ibupoto, A. Nafady, R.A. Soomro, Sirajuddin, S.T. Hussain Sherazi, M.I. Abro, M. Willander, Glycine-assisted synthesis of Nio hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. Rsc Advances. 5 (2015) 18773-18781.
 [93]E. Desimoni, B. Brunetti, Presenting analytical performances of electrochemical sensors. Some suggestions. Electroanalysis. 25 (2013) 1645-1651.
 [94]L.H. Li, W.D. Zhang, J.S. Ye, Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis. 20 (2008) 2212-2216.
 [95]Y.X. Liu, Y. Ding, Y.C. Zhang, Y. Lei, Pt-Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sensors and Actuators B-Chemical. 171 (2012) 954-961.
 [96]L.H. Li, W.D. Zhang, Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta. 163 (2008) 305-311.
 [97]C. Su, C. Zhang, G.Q. Lu, C.N. Ma, Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis. 22 (2010) 1901-1905.
 [98]Y. Liu, Y.Q. Dong, C.X. Guo, Z.M. Cui, L.X. Zheng, C.M. Li, Protein-directed in situ synthesis of gold nanoparticles on reduced graphene oxide modified electrode for nonenzymatic glucose sensing. Electroanalysis. 24 (2012) 2348-2353.
 [99]J.P. Wang, Z.H. Wang, D.Y. Zhao, C.X. Xu, Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Analytica Chimica Acta. 832 (2014) 34-43.
 [100] Q.F. Yi, W.Q. Yu, F.J. Niu, Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation. Electroanalysis. 22 (2010) 556-563.
 [101] Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical. 134 (2008) 471-476.
 [102] Y. Yu, Q.B. Zhang, B. Liu, J.Y. Lee, Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral au templates. Journal of the American Chemical Society. 132 (2010) 18258-18265.
 [103] W. Niu, L. Zhang, G. Xu, Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano. 4 (2010) 1987-1996.
 [104] C.L. Lee, H.P. Chiou, Methanol-tolerant Pd nanocubes for catalyzing oxygen reduction reaction in H2SO4 electrolyte. Applied Catalysis B: Environmental. 117–118 (2012) 204-211.
 [105] C.L. Lee, H.P. Chiou, C.R. Liu, Palladium nanocubes enclosed by (100) planes as electrocatalyst for alkaline oxygen electroreduction. International Journal of Hydrogen Energy. 37 (2012) 3993-3997.
 [106] G. Collins, M. Schmidt, G.P. McGlacken, C. O'Dwyer, J.D. Holmes, Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals. Journal of Physical Chemistry C. 118 (2014) 6522-6530.
 [107] X.W. Zhang, H.J. Yin, J.F. Wang, L. Chang, Y. Gao, W. Liu, Z.Y. Tang, Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale. 5 (2013) 8392-8397.
 [108] D.M. Shuai, D.C. McCalman, J.K. Choe, J.R. Shapley, W.F. Schneider, C.J. Werth, Structure sensitivity study of waterborne contaminant hydrogenation using shape- and size-controlled Pd nanoparticles. ACS Catalysis. 3 (2013) 453-463.
 [109] X.Q. Huang, Y.J. Li, H.L. Zhou, X.F. Duan, Y. Huang, Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Letters. 12 (2012) 4265-4270.
 [110] B. Lim, M.J. Jiang, J. Tao, P.H.C. Camargo, Y.M. Zhu, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Advanced Functional Materials. 19 (2009) 189-200.
 [111] M. Kim, Y. Kim, J.W. Hong, S. Ahn, W.Y. Kim, S.W. Han, The facet-dependent enhanced catalytic activity of Pd nanocrystals. Chemical Communications. 50 (2014) 9454-9457.
 [112] S.Y. Liu, Y.T. Shen, C.Y. Chiu, S. Rej, P.H. Lin, Y.C. Tsao, M.H. Huang, Direct synthesis of palladium nanocrystals in aqueous solution with systematic shape evolution. Langmuir. 31 (2015) 6538-6545.
 [113] L. Zhang, W.X. Niu, G.B. Xu, Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today. 7 (2012) 586-605.
 [114] W.X. Niu, L. Zhang, G.B. Xu, Seed-mediated growth of noble metal nanocrystals: Crystal growth and shape control. Nanoscale. 5 (2013) 3172-3181.
 [115] M.H. Shao, T. Yu, J.H. Odell, M.S. Jin, Y.N. Xia, Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chemical Communications. 47 (2011) 6566-6568.
 [116] L.L. Fang, Q.A. Tao, M.F. Li, L.W. Liao, D. Chen, Y.X. Chen, Determination of the real surface area of palladium electrode. Chinese Journal of Chemical Physics. 23 (2010) 543-548.
 [117] A. Cuesta, L.A. Kibler, D.M. Kolb, A method to prepare single crystal electrodes of reactive metals: Application to Pd(hkl). Journal of Electroanalytical Chemistry. 466 (1999) 165-168.
 [118] M. Shao, J. Odell, M. Humbert, T. Yu, Y. Xia, Electrocatalysis on shape-controlled palladium nanocrystals: Oxygen reduction reaction and formic acid oxidation. The Journal of Physical Chemistry C. 117 (2013) 4172-4180.
 [119] C.C. Chen, C.L. Lin, L.C. Chen, Functionalized carbon nanomaterial supported palladium nano-catalysts for electrocatalytic glucose oxidation reaction. Electrochimica Acta. 152 (2015) 408-416.
 [120] L. Yan, A. Brouzgou, Y. Meng, M. Xiao, P. Tsiakaras, S. Song, Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental. 150–151 (2014) 268-274.
 [121] C.H. Wang, S.W. Lee, C.J. Tseng, J.W. Wu, I.M. Hung, C.M. Tseng, J.K. Chang, Nanocrystalline Pd/carbon nanotube composites synthesized using supercritical fluid for superior glucose sensing performance. Journal of Alloys and Compounds. 615 (2014) S496-S500.
 [122] A.N. Zhong, X.L. Luo, L.P. Chen, S.S. Wei, Y.H. Liang, X.C. Li, Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta. 182 (2015) 1197-1204.
 [123] X.Y. Xiao, G.A. Montano, T.L. Edwards, C.M. Washburn, S.M. Brozik, D.R. Wheeler, D.B. Burckel, R. Polsky, Lithographically defined 3D nanoporous nonenzymatic glucose sensors. Biosensors & Bioelectronics. 26 (2011) 3641-3646.
 [124] D.Y. Zhao, Z.H. Wang, J.P. Wang, C.X. Xu, The nanoporous PdCr alloy as a nonenzymatic electrochemical sensor for hydrogen peroxide and glucose. Journal of Materials Chemistry B. 2 (2014) 5195-5201.
 [125] G. Chang, H.H. Shu, K. Ji, M. Oyama, X. Liu, Y.B. He, Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Applied Surface Science. 288 (2014) 524-529.
 [126] L. Han, S. Zhang, L.H. Han, D.P. Yang, C.T. Hou, A.H. Liu, Porous gold cluster film prepared from Au@BSA microspheres for electrochemical nonenzymatic glucose sensor. Electrochimica Acta. 138 (2014) 109-114.
 [127] F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru,Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosensors and Bioelectronics. 24 (2009) 3481-3486.
 [128] Z. Dai, G. Shao, J. Hong, J. Bao, J. Shen, Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous zno nanostructure for a glucose biosensor. Biosensors and Bioelectronics. 24 (2009) 1286-1291.
 [129] E. Shoji, M.S. Freund, Potentiometric sensors based on the inductive effect on the pK(a) of poly(aniline): A nonenzymatic glucose sensor. Journal of the American Chemical Society. 123 (2001) 3383-3384.
 [130] B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: Identification of reactive intermediates and reaction products. Electrochimica Acta. 41 (1996) 701-709.
 [131] I.T. Bae, E. Yeager, X. Xing, C.C. Liu, In situ infrared studies of glucose oxidation on platinum in an alkaline medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 309 (1991) 131-145.
 [132] S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Analytical Chemistry. 75 (2003) 3046-3049.
 [133] H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, P.J. Gao, Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. Journal of Physical Chemistry C. 112 (2008) 14781-14785.
 [134] X. Bo, L. Guo, Simple synthesis of macroporous carbon–graphene composites and their use as a support for Pt electrocatalysts. Electrochimica Acta. 90 (2013) 283-290.
 [135] D. Rathod, C. Dickinson, D. Egan, E. Dempsey, Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing. Sensors and Actuators B: Chemical. 143 (2010) 547-554.
 [136] S. Jagannathan, T. Liu, S. Kumar, Pore size control and electrochemical capacitor behavior of chemically activated polyacrylonitrile – carbon nanotube composite films. Composites Science and Technology. 70 (2010) 593-598.
 [137] E.J. Ra, E. Raymundo-Piñero, Y.H. Lee, F. Béguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon. 47 (2009) 2984-2992.
 [138] C.L. Lee, Y.C. Ju, P.T. Chou, Y.C. Huang, L.C. Kuo, J.C. Oung, Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications. 7 (2005) 453-458.
 [139] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work functions and surface functional groups of multiwall carbon nanotubes. Journal of Physical Chemistry B. 103 (1999) 8116-8121.
 [140] S.M. Andersen, R. Dhiman, E. Skou, Chemistry of carbon polymer composite electrode - An x-ray photoelectron spectroscopy study. Journal of Power Sources. 274 (2015) 1217-1223.
 [141] A. Achour, S. Vizireanu, G. Dinescu, L. Le Brizoual, M.A. Djouadi, M. Boujtita, Electrochemical anodic oxidation of nitrogen doped carbon nanowall films: X-ray photoelectron and micro-raman spectroscopy study. Applied Surface Science. 273 (2013) 49-57.
 [142] C.W. Chen, Z.T. Liu, Y.Z. Zhang, J.S. Ye, C.L. Lee, Sonoelectrochemical intercalation and exfoliation for the preparation of defective graphene sheets and their application as nonenzymatic H2O2 sensors and oxygen reduction catalysts. Rsc Advances. 5 (2015) 21988-21998.
 [143] H.X. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Analytical Chemistry. 73 (2001) 915-920.
 [144] H.W. Chang, Y.C. Tsai, C.W. Cheng, C.Y. Lin, P.H. Wu, Preparation of platinum/carbon nanotube in aqueous solution by femtosecond laser for non-enzymatic glucose determination. Sensors and Actuators B-Chemical. 183 (2013) 34-39.
 
 
 |