跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 14:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王國昌
研究生(外文):Wang, Guo-Chang
論文名稱:在離體發炎模式下誘發骨骼肌母細胞C2C12萎縮的訊息路徑
論文名稱(外文):The Signaling Pathways of Skeletal Myoblast C2C12 Cell Atrophy Induced by In Vitro Inflammatory Model
指導教授:王 霈鍾敦輝
指導教授(外文):Wang, PeiChung, Tun-Hui
口試委員:吳建春吳文彬張正琪
口試委員(外文):Wu, Jiahn-ChunWu, Wen-BinChang, Cheng-Chi
口試日期:2015-01-20
學位類別:碩士
校院名稱:輔仁大學
系所名稱:基礎醫學研究所碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:75
中文關鍵詞:骨骼肌母細胞C2C12訊息路徑發炎肌肉萎縮肌肉生長抑制素指筏蛋白-3
外文關鍵詞:Skeletal Myoblast C2C12 CellSignaling PathwayInflammationMuscle AtrophyMyostatinCaveolin-3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人體骨骼肌大約佔身體重量的40-50%,主要負責運動及生理平衡,這也是惡病質主要的作用標地。惡病質經常伴隨慢性疾病的發生,像是慢性腎臟疾病、慢性心臟衰竭、慢性阻塞性肺疾病,老化、後天免疫不全症、糖尿病等,它會導致骨骼肌重量的流失以及肌肉萎縮的發生。慢性疾病誘發的肌肉萎縮會造成骨骼肌無力、發炎、衰弱,並且引致約20-30%的癌症病患死亡。 先前研究已發現促發炎細胞激素像是TNF-α、IL-1β和IL-6與這些慢性疾病相關的肌肉病變有關連。此外,肌肉生長抑制素和脂筏蛋白-3 在肌肉萎縮中亦可能扮演重要的調控角色。在本研究中,我們模擬出一細胞激素混合液誘發的離體發炎環境,以探討在骨骼肌纖維母細胞C2C12 細胞萎縮時可能的訊息調控機制。我們將TNF-α、IL-1β 和 IL-6促細胞激素的混合液稱為cytomix。首先我們先檢測個別促發炎細胞激素對於C2C12 細胞存活率及發炎的作用,在使用CCK-8 試劑組、phalloidin 細胞免疫染色、scepter assay、膜質核分離製備技術、西方墨點法、免疫細胞化學染色等處理後,結果顯示TNF-α所的造成 C2C12 細胞萎縮和發炎反應有時間和劑量相依的效果。我們接著進一步探討細胞激素混合液在 C2C12細胞的作用,結果造成細胞發生顯著的萎縮變化,亦造成特異性蛋白質的活化,如ERK、p38、CREB和NF-κB的磷酸化以及TGF-β RI和肌肉生長抑制素的上升,但脂筏蛋白-3表現量卻是減少的。這些活化的蛋白質能夠藉由預處理 MEK/ERK 抑制劑U0126而被抑制,卻不影響p38、脂筏蛋白-3和TGF-β RI的表現。另外我們也發現,預處理 p38抑制劑SB203580不但不能夠防止細胞萎縮,反而會提早細胞萎縮的出現。有趣的是,利用細胞激素混合液處理24小時的細胞培養液作用,亦會加速細胞萎縮的發生。我們的結果也證實在細胞激素混合液引起C2C12細胞萎縮的作用中,MEK/ERK/CREB訊息路徑和肌肉生長抑制素表現之間的關連性。脂筏蛋白-3似乎可以透過p38訊息路徑在防止細胞萎縮中扮演關鍵的調節角色。這些結果有助於進一步了解惡病質的病理機制,並應用於改善慢性疾病的臨床治療策略。


In human body, skeletal muscle accounts for 40% to 50% of the total body mass and is the major structure to responsible for movement and physiological homeostasis. Unfortunately, it is also the main target to be attacked from cachexia. Cachexia usually occurs with chronic diseases, such as CKD, CHF, COPD, aging, AIDS and diabetes mellitus, which causes the loss of skeletal muscle mass and muscle atrophy. Chronic diseases-induced muscle atrophy involves skeletal muscle weakness, inflammation, wasting, and leads to an estimated of 20% to 30% deaths of cancer patients. Previous studies have demonstrated that pro-inflammatory cytokines including TNF-α, IL-1β and IL-6 are associated with the cachexia-related myopathy. Additionally, myostatin and caveolin-3 may play important mediators in the muscle atrophy. In present study, we mimicked an in vitro cytokine mixture-induced inflammatory environment to investigate the possible signaling regulatory mechanisms in skeletal myoblast C2C12 cell atrophy. The pro-inflammatory cytokine mixture of TNF-α, IL-1β and IL-6 was termed as cytomix. First, we examined the effect of individual pro-inflammatory cytokine on viability and inflammatory response of C2C12 cells. After applying CCK-8 kit, the phalloidin cytochemistry, scepter assay, membranous/cytosolic/nuclear fractions preparation, western blotting and immunocytochemistry staining were carried and the results indicated that the TNF-α may cause C2C12 cell atrophy and inflammation in time- and dose-dependent manner. Moreover, we evaluated the effects of cytomix on C2C12 cells, and results displayed dramatically atrophic changes and activation of specific proteins such as phosphorylation of ERK, p38, CREB, NF-κB as well as the up-regulation of TGF-β RI and myostatin, except caveolin-3. These inductions were inhibited by pre-treatment of MEK/ERK inhibitor U0126, but no effect on p38, caveolin-3 and TGF-β RI. Otherwise, we also found that C2C12 cells not only failed to prevent atrophy but also leaded to early onset of atrophy by pre-treatment of p38 inhibitor SB203580. Interestingly, the condition medium from 24 hours cytomix-treated cell culture also could speed up the occurrence of cell atrophy. Our results identified the relationship between activation of MEK/ERK/CREB signaling pathway and expression pattern of myostatin in the cytomix-caused C2C12 cell atrophy. The caveolin-3 seems to be a crucial mediator in preventing cell atrophy through p38 signaling pathway. These findings may help in further understanding of the pathogenesis of cachexia and application in improving clinical treatment strategies on chronic diseases.
口試委員會審定書............................................................................................................I

Acknowledgement........................................................................................................II

Abstract (Chinese).......................................................................................................IV

Abstract (English).........................................................................................................V

List of abbreviations...................................................................................................VII

Chapte I. Introduction....................................................................................................1

Chapte II. Materials and Methods..............................................................................7

Chapte III. Results.......................................................................................................12

Chapte IV. Discussion..................................................................................................19

Chapte V. Summary......................................................................................................24

Chapte VI. Figures..........................................................................................................25

Chapte VII. References..................................................................................................59

Acharyya, S., K. J. Ladner, L. L. Nelsen, J. Damrauer, P. J. Reiser, S. Swoap and D. C. Guttridge (2004). "Cancer cachexia is regulated by selective targeting of skeletal muscle gene products." J Clin Invest 114(3): 370-378.
Aggarwal, B. B., S. Shishodia, S. K. Sandur, M. K. Pandey and G. Sethi (2006). "Inflammation and cancer: how hot is the link?" Biochem Pharmacol 72(11): 1605-1621.
Baumann, A. P., C. Ibebunjo, W. A. Grasser and V. M. Paralkar (2003). "Myostatin expression in age and denervation-induced skeletal muscle atrophy." J Musculoskelet Neuronal Interact 3(1): 8-16.
Bellott, A. C., K. C. Patel and T. J. Burkholder (2005). "Reduction of caveolin-3 expression does not inhibit stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes." J Appl Physiol (1985) 98(4): 1554-1561.
Brooks, N. E. and K. H. Myburgh (2014). "Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways." Front Physiol 5: 99.
Carozzi, A. J., S. Roy, I. C. Morrow, A. Pol, B. Wyse, J. Clyde-Smith, I. A. Prior, S. J. Nixon, J. F. Hancock and R. G. Parton (2002). "Inhibition of lipid raft-dependent signaling by a dystrophy-associated mutant of caveolin-3." J Biol Chem 277(20): 17944-17949.
Christiane K-K, Gredes T, Lucke S, M. S, Mielczarek A, Katarzyna S-T, Gedrange T and S. A (2011). "Caveolin-1, caveolin-3 and VEGF expression in the masticatory muscles of mdx mice." Folia Histochem Cytobiol.
Das, A. K., Q. Y. Yang, X. Fu, J. F. Liang, M. S. Duarte, M. J. Zhu, G. D. Trobridge and M. Du (2012). "AMP-activated protein kinase stimulates myostatin expression in C2C12 cells." Biochem Biophys Res Commun 427(1): 36-40.
Das, M., J. Cui and D. K. Das (2007). "Generation of survival signal by differential interaction of p38MAPKalpha and p38MAPKbeta with caveolin-1 and caveolin-3 in the adapted heart." J Mol Cell Cardiol 42(1): 206-213.
Di Marco, S., A. Cammas, X. J. Lian, E. N. Kovacs, J. F. Ma, D. T. Hall, R. Mazroui, J. Richardson, J. Pelletier and I. E. Gallouzi (2012). "The translation inhibitor pateamine A prevents cachexia-induced muscle wasting in mice." Nat Commun 3: 896.
Elkina, Y., S. von Haehling, S. D. Anker and J. Springer (2011). "The role of myostatin in muscle wasting: an overview." J Cachexia Sarcopenia Muscle 2(3): 143-151.
Evans, W. J., J. E. Morley, J. Argiles, C. Bales, V. Baracos, D. Guttridge, A. Jatoi, K. Kalantar-Zadeh, H. Lochs, G. Mantovani, D. Marks, W. E. Mitch, M. Muscaritoli, A. Najand, P. Ponikowski, F. Rossi Fanelli, M. Schambelan, A. Schols, M. Schuster, D. Thomas, R. Wolfe and S. D. Anker (2008). "Cachexia: a new definition." Clin Nutr 27(6): 793-799.
Fukai, Y., M. Fukuchi, N. Masuda, H. Osawa, H. Kato, T. Nakajima and H. Kuwano (2003). "Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma." Int J Cancer 104(2): 161-166.
Galbiati, F., D. Volonte, J. A. Engelman, P. E. Scherer and M. P. Lisanti (1999). "Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation." J Biol Chem 274(42): 30315-30321.
Gaussin, V. and C. Depre (2005). "Myostatin, the cardiac chalone of insulin-like growth factor-1." Cardiovasc Res 68(3): 347-349.
Gazzerro, E., F. Sotgia, C. Bruno, M. P. Lisanti and C. Minetti (2010). "Caveolinopathies: from the biology of caveolin-3 to human diseases." Eur J Hum Genet 18(2): 137-145.
Gullett, N. P., G. Hebbar and T. R. Ziegler (2010). "Update on clinical trials of growth factors and anabolic steroids in cachexia and wasting." Am J Clin Nutr 91(4): 1143S-1147S.
Hadj Sassi, A., J. Monteil, P. Sauvant and C. Atgie (2012). "Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity." J Physiol Biochem 68(4): 683-690.
Han, D. S., Y. Chu-Su, C. K. Chiang, F. Y. Tseng, P. H. Tseng, C. L. Chen, K. D. Wu and W. S. Yang (2014). "Serum myostatin is reduced in individuals with metabolic syndrome." PLoS One 9(9): e108230.
Holecek, M. (2012). "Muscle wasting in animal models of severe illness." Int J Exp Pathol 93(3): 157-171.
Hunter, R. B., E. Stevenson, A. Koncarevic, H. Mitchell-Felton, D. A. Essig and S. C. Kandarian (2002). "Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy." FASEB J 16(6): 529-538.
Inman, G. J. and M. J. Allday (2000). "Resistance to TGF-beta1 correlates with a reduction of TGF-beta type II receptor expression in Burkitt's lymphoma and Epstein-Barr virus-transformed B lymphoblastoid cell lines." J Gen Virol 81(Pt 6): 1567-1578.
Jackman, R. W., E. W. Cornwell, C. L. Wu and S. C. Kandarian (2013). "Nuclear factor-kappaB signalling and transcriptional regulation in skeletal muscle atrophy." Exp Physiol 98(1): 19-24.
Kefaloyianni, E., C. Gaitanaki and I. Beis (2006). "ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts." Cell Signal 18(12): 2238-2251.
Kemaladewi, D. U., D. J. de Gorter, A. Aartsma-Rus, G. J. van Ommen, P. ten Dijke, P. A. t Hoen and W. M. Hoogaars (2012). "Cell-type specific regulation of myostatin signaling." FASEB J 26(4): 1462-1472.
Kornasio, R., I. Riederer, G. Butler-Browne, V. Mouly, Z. Uni and O. Halevy (2009). "Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways." Biochim Biophys Acta 1793(5): 755-763.
Krajewska, W. M. and I. Maslowska (2004). "Caveolins: structure and function in signal transduction." Cell Mol Biol Lett 9(2): 195-220.
Kramer, H. F. and L. J. Goodyear (2007). "Exercise, MAPK, and NF-kappaB signaling in skeletal muscle." J Appl Physiol (1985) 103(1): 388-395.
Kumar, A., S. Bhatnagar and P. K. Paul (2012). "TWEAK and TRAF6 regulate skeletal muscle atrophy." Curr Opin Clin Nutr Metab Care 15(3): 233-239.
Kunert-Keil, C., T. Gredes, S. Lucke, S. Morgenstern, A. Mielczarek, K. Sporniak-Tutak, T. Gedrange and A. Spassov (2011). "Caveolin-1, caveolin-3 and VEGF expression in the masticatory muscles of mdx mice." Folia Histochem Cytobiol 49(2): 291-298.
Langen, R. C., A. M. Schols, M. C. Kelders, E. F. Wouters and Y. M. Janssen-Heininger (2001). "Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB." FASEB J 15(7): 1169-1180.
Lemire, B. B., R. Debigare, A. Dube, M. E. Theriault, C. H. Cote and F. Maltais (2012). "MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease." J Appl Physiol (1985) 113(1): 159-166.
Lenk, K., G. Schuler and V. Adams (2010). "Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training." Journal of Cachexia, Sarcopenia and Muscle 1(1): 9-21.
Li, H., S. Malhotra and A. Kumar (2008). "Nuclear factor-kappa B signaling in skeletal muscle atrophy." J Mol Med (Berl) 86(10): 1113-1126.
Li, Y. P., Y. Chen, J. John, J. Moylan, B. Jin, D. L. Mann and M. B. Reid (2005). "TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle." FASEB J 19(3): 362-370.
Lokireddy S., McFarlane C., Ge X., Zhang H., Sze S K., Sharma M. and Kambadur R. (2011). "Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting." Mol Endocrinol 25(11): 1936-1949.
Mendias, C. L., J. P. Gumucio, M. E. Davis, C. W. Bromley, C. S. Davis and S. V. Brooks (2012). "Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis." Muscle Nerve 45(1): 55-59.
Meulmeester, E. and P. Ten Dijke (2011). "The dynamic roles of TGF-beta in cancer." J Pathol 223(2): 205-218.
Minetti C, Bado M, Broda P, Sotgia F, Bruno C, Galbiati F, Volonte D, Lucania G, Pavan A, Bonilla E, Lisanti M P and C. G (2002). "Impairment of Caveolae Formation and T-System Disorganization in Human Muscular Dystrophy with Caveolin-3 Deficiency." American Journal of Pathology.
Mora-Garcia P, Cheng J, Crans-Vargas HN, Countouriotis A, Shankar D and S. KM. (2003). "Transcriptional regulators and myelopoiesis the role of serum response factor and CREB as targets of cytokine signaling." Stem Cells.
Morrison, P. K., C. Bing, P. A. Harris, C. A. Maltin, D. Grove-White and C. M. Argo (2014). "Preliminary investigation into a potential role for myostatin and its receptor (ActRIIB) in lean and obese horses and ponies." PLoS One 9(11): e112621.
Nonaka, M. (2009). "A Janus-like role of CREB protein: enhancement of synaptic property in mature neurons and suppression of synaptogenesis and reduced network synchrony in early development." J Neurosci 29(20): 6389-6391.
Ohsawa, Y., T. Okada, A. Kuga, S. Hayashi, T. Murakami, K. Tsuchida, S. Noji and Y. Sunada (2008). "Caveolin-3 regulates myostatin signaling. Mini-review." Acta Myol 27: 19-24.
Ohsawa, Y., T. Okada, S. Nishimatsu, M. Ishizaki, T. Suga, M. Fujino, T. Murakami, M. Uchino, K. Tsuchida, S. Noji, A. Hinohara, T. Shimizu, K. Shimizu and Y. Sunada (2012). "An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy." Lab Invest 92(8): 1100-1114.
Okamoto, T., A. Schlegel, P. E. Scherer and M. P. Lisanti (1998). "Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane." J Biol Chem 273(10): 5419-5422.
Ono, H., T. Ichiki, K. Fukuyama, N. Iino, S. Masuda, K. Egashira and A. Takeshita (2004). "cAMP-response element-binding protein mediates tumor necrosis factor-alpha-induced vascular smooth muscle cell migration." Arterioscler Thromb Vasc Biol 24(9): 1634-1639.
Pahl, H. L. (1999). "Activators and target genes of Rel/NF-kappaB transcription factors." Oncogene 18(49): 6853-6866.
Penna, F., D. Costamagna, A. Fanzani, G. Bonelli, F. M. Baccino and P. Costelli (2010). "Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition." PLoS One 5(10): e13604.
Philip, B., Z. Lu and Y. Gao (2005). "Regulation of GDF-8 signaling by the p38 MAPK." Cell Signal 17(3): 365-375.
Pohlers, D., J. Brenmoehl, I. Loffler, C. K. Muller, C. Leipner, S. Schultze-Mosgau, A. Stallmach, R. W. Kinne and G. Wolf (2009). "TGF-beta and fibrosis in different organs - molecular pathway imprints." Biochim Biophys Acta 1792(8): 746-756.
Razani, B., A. Schlegel and M. P. Lisanti (2000). "Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy." J Cell Sci 113 ( Pt 12): 2103-2109.
Reisz-Porszasz, S., S. Bhasin, J. N. Artaza, R. Shen, I. Sinha-Hikim, A. Hogue, T. J. Fielder and N. F. Gonzalez-Cadavid (2003). "Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin." Am J Physiol Endocrinol Metab 285(4): E876-888.
Rossi, S., Poliani, P. L., Missale, C., Monti, E., Fanzani, A., (2011). "Caveolins in rhabdomyosarcoma." J Cell Mol Med 15(12): 2553-2568.
Sato, S., Y. Ogura and A. Kumar (2014). "TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction." Front Immunol 5: 18.
Springer, J., V. Adams and S. D. Anker (2010). "Myostatin: Regulator of muscle wasting in heart failure and treatment target for cardiac cachexia." Circulation 121(3): 354-356.
Thomas, S. S. and W. E. Mitch (2013). "Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin." Clin Exp Nephrol 17(2): 174-182.
Tidball, J. G. and M. Wehling-Henricks (2007). "The role of free radicals in the pathophysiology of muscular dystrophy." J Appl Physiol (1985) 102(4): 1677-1686.
Wang, X., J. L. Martindale, Y. Liu and N. J. Holbrook (1998). "The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival." Biochem J 333 ( Pt 2): 291-300.
Wysong A., Couch M., Shadfar S., Li L., Rodriguez J. E., Asher S., Yin X., Gore M., Baldwin A., Patterson C. and Willis M S. (2011). "NF-kappaB inhibition protects against tumor-induced cardiac atrophy in vivo." Am J Pathol 178(3): 1059-1068.
Yakymovych, I., P. Ten Dijke, C. H. Heldin and S. Souchelnytskyi (2001). "Regulation of Smad signaling by protein kinase C." FASEB J 15(3): 553-555.
Yang, W., Y. Chen, Y. Zhang, X. Wang, N. Yang and D. Zhu (2006). "Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression." Cancer Res 66(3): 1320-1326.
Yende, S., G. W. Waterer, E. A. Tolley, A. B. Newman, D. C. Bauer, D. R. Taaffe, R. Jensen, R. Crapo, S. Rubin, M. Nevitt, E. M. Simonsick, S. Satterfield, T. Harris and S. B. Kritchevsky (2006). "Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects." Thorax 61(1): 10-16.
Zhang, L., V. Rajan, E. Lin, Z. Hu, H. Q. Han, X. Zhou, Y. Song, H. Min, X. Wang, J. Du and W. E. Mitch (2011). "Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease." FASEB J 25(5): 1653-1663.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊