跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李頂立
研究生(外文):Ding-Li Li
論文名稱:新型間位胺基取代之類綠螢光蛋白發光團的合成與螢光性質
論文名稱(外文):Synthesis and Fluorescence Properties of New Meta-Amino Substituted GFP Chromophore Analogues
指導教授:楊吉水
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:144
中文關鍵詞:間位胺基取代綠螢光蛋白發光團合成螢光
外文關鍵詞:SynthesisFluorescenceMeta-Amino SubstitutedGFP Chromophore
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室過去發現間位胺基取代類綠螢光蛋白發光團能有效地提高螢光量子產率,例如:m-DMABDI在正己烷中的螢光量子產率高達0.46,並在質子性溶劑中具螢光淬滅的特性,這一類的發光團也被成功的應用至人類乳腺上皮細胞做細胞顯影,在細胞中呈現綠色螢光。
本論文內容指在將m-DMABDI做結構修飾成化合物1-4,利用非共軛 π-π 作用力,希望使其放光能更加紅位移。在結構設計上保留了間位胺基取代效應來提高螢光量子產率,以及在質子、非質子性環境中具有螢光量子產率的高度對比差異。根據Hirayama’s rule,期望能夠藉形成分子內激發錯合體得到放光紅移並高亮度的發光團,並在發光團的部位加上酯基做為m-D1Aa的前驅物;於是我們在m-DMABDI間位的胺基上修飾上苯乙基團 (n = 3)或苯丙基團 (n = 4),除了希望使放光紅位移之外,並嘗試了解碳鏈長度在這個系統與Hirayama’s rule的關係;另外,嘗試在苯環的對位接上推、拉電子基 (-OMe、-CN),利用增強或減弱施予體的強度改變發光團的放光波長。目前研究的結果顯示,我們所設計的分子1-4在常溫下觀測不到因分子內激發錯合體形成所造成的紅位移放光,化合物3、4因取代基效應各自藍位移及紅移大約10 nm;而我們發現化合物1在180 K低溫的環境下,螢光放光紅位移了30 nm。
Meta-Amino substituted green fluorescence protein chromophores (GFPc) such as m-DMABDI displays strong fluorescence in non-polar aprotic solvents (e.q., ϕ_f = 0.46 in n-Hex)as a result of the “meta-amino substituent effect” but undergoes fluorescence quenching in protic solvents due to solvent–solute H-bonding interactions. This type of chromophore has been applied in bioimaging, which showed green fluorescence in the hydrophobic regions of human mammary epithelial cells. However, fluorescent dyes with green emission might be interfered by autofluorescence of the biological samples. In order to avoid this problem, developing chromophores of red-shifted emission is necessary.
In this thesis, we modified the structure of m-DMABDI to four compounds 1-4 to introduce non-covalent π-π interactions for the red shift of fluorescence. Because of the meta-amino effect, the feature of high fluorescence quantum yield and high different fluorescence quantum yield between the protic and aprotic solvent are retained. Also, introducing the ester group to the imidazolinone is to enhance the water solubility upon hydrolyzed to the corresponding acid. According to the Hirayama’s rule, the fluorescence could be red-shifted upon the formation of intramolecular exciplex. The ethylbenzene (1) and propylbenzene (2) system provide the correlation of the chain length and the emission wavelength; Introducing the electron withdrawing cyano (3) and electron donating methoxy (4) to would change the donor-acceptor strength. Our results show that there are no red-shifted emission between compound 1-4 in the room temperature. Cause of the meta-amino effect, compound 3, 4 shows blue and red shift fluorescence respectively, and compound 1 is red-shifted by 30 nm at 180 K.
謝誌 i
摘要 v
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xv
附圖目錄 xvi
第一章 引言 1
1-1 電磁輻射簡介 1
1-2 光物理行為 2
1-2-1 螢光量子產率 4
1-2-2 吸收度 4
1-2-3 生命期 5
1-2-4 溶劑化顯色效應(Solvatochromism) 6
1-3 光學異構化作用 7
1-4 聚集引致發光 9
1-5 生物螢光 12
1-6綠色螢光蛋白 (Green Fluorescent Proteins) 14
1-6-1 綠色螢光蛋白發光團 (Green Fluorescent Protein Chromophores) 17
1-7 綠色螢光蛋白發光團衍生物 (類GFPc) 19
1-7-1 鎖式結構 (structure confinement) 19
1-7-2 環境效應 (environment confinement) 20
1-7-3 電子效應 (kinetic confinement) 22
1-8 胺基取代之類綠色螢光蛋白發光團 23
1-9 類綠螢光蛋白發光團衍生物之細胞顯影應用 27
1-10 黃色螢光蛋白 (Yellow Fluorescent Proteins) 30
1-11 Hirayama’s rule 31
1-12 研究動機 35
第二章 結果與討論 36
2-1 目標化合物之合成與結構 36
2-1-1 目標化合物1和 2的合成 36
2-1-2 目標化合物3和 4的合成 39
2-1-3 目標化合物之結構 48
2-2 發光團之光學性質探討 51
2-2-1 吸收光譜 51
2-2-2 螢光光譜 56
2-2-3 螢光量子產率與生命期 60
2-2-4 聚集引致發光測試與固態粉末放光 62
2-2-5 化合物1之變溫吸收與放光光譜 64
第三章 結論 68
第四章 實驗儀器與方法 69
4-1 實驗藥品及溶劑 69
4-2 實驗儀器與方法 70
4-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance,400 MHz) 70
4-2-2 紫外光/可見光吸收光譜儀 (Ultraviolet/Visible Spectrophotometer) 71
4-2-3 螢光光譜儀 (Fluorescence Spectrometer) 71
4-2-4 螢光量子產率測量步驟 72
4-2-5 聚集引致發光測量步驟 73
4-2-6 紅外線吸收光譜儀(FT-Infrared Spectrometer) 74
4-2-7 高解析度質譜儀 (High resolution Mass) 74
4-2-8 X-ray 單晶繞射體 (Single-crystal X-ray Spectrometer) 74
4-2-9 溶點測定儀 75
4-2-10 溶劑純化系統 75
4-3 化合物之合成步驟 75
第五章 參考資料 87
附圖 95
1.Atkins, P.; de Paula, J., Physical Chemistry for the Life Sciences. OUP Oxford: 2011.

2.Pawlizak, S. Mechanosensitive behavior of neuronal growth cones. Faculty of Physics and Earth Sciences. University of Leipzig, Germany 2009, 58.

3.Khan, M.; Khalilian, A.; Kang, S.-W. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane. Sensors 2016, 16 (2), 265.

4.Park, J. H.; Scheerer, P.; Hofmann, K. P.; Choe, H.-W.; Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 2008, 454 (7201), 183-187.

5.Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 1991, 91 (3), 415-436.

6.Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S. The Photochemistry of trans-ortho-, -meta-, and -para-Aminostilbenes. J. Am. Chem. Soc. 1999, 121 (51), 12045-12053.

7.(a) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, (29), 4332-4353; (b) Anariba, F.; Chng, L. L.; Abdullah, N. S.; Tay, F. E. H. Syntheses, optical properties, and bioapplications of the aggregation-induced emission of 2,3,4,5-tetraphenylcyclopenta-2,4-dienyl benzene derivatives. J. Mater. Chem. 2012, 22 (36), 19303-19310; (c) Tong, H.; Hong, Y.; Dong, Y.; Häussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Protein Detection and Quantitation by Tetraphenylethene-Based Fluorescent Probes with Aggregation-Induced Emission Characteristics. J. Phys. Chem. B 2007, 111 (40), 11817-11823; (d) Bandrowsky, T. L.; Carroll, J. B.; Braddock-Wilking, J. Synthesis, Characterization, and Crystal Structures of 1,1-Disubstituted-2,3,4,5-tetraphenylgermoles That Exhibit Aggregation-Induced Emission. Organometallics 2011, 30 (13), 3559-3569; (e) Luo, J.; Wang, X.; Wang, X.; Su, W. White-Light Electroluminescence with Tetraphenylethylene as Emitting Layer of Aggregation-Induced Emissions Enhancement. Chin. J. Chem . 2012, 30 (10), 2488-2494.

8.Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115 (21), 11718-11940.

9.Dong, J.; Solntsev, K. M.; Tolbert, L. M. Activation and Tuning of Green Fluorescent Protein Chromophore Emission by Alkyl Substituent-Mediated Crystal Packing. J. Am. Chem. Soc. 2009, 131 (2), 662-670.

10.Tou, S.-L.; Huang, G.-J.; Chen, P.-C.; Chang, H.-T.; Tsai, J.-Y.; Yang, J.-S. Aggregation-induced emission of GFP-like chromophores via exclusion of solvent-solute hydrogen bonding. Chem. Commun. 2014, 50 (5), 620-622.

11.Douglas, R. H.; Mullineaux, C. W.; Partridge, J. C. Long–wave sensitivity in deep–sea stomiid dragonfish with far–red bioluminescence: evidence for a dietary origin of the chlorophyll–derived retinal photosensitizer of Malacosteus niger. Phil. Trans. R. Soc. B 2000, 355 (1401), 1269-1272.

12.Nakatsu, T.; Ichiyama, S.; Hiratake, J.; Saldanha, A.; Kobashi, N.; Sakata, K.; Kato, H. Structural basis for the spectral difference in luciferase bioluminescence. Nature 2006, 440 (7082), 372-376.

13.Zimmer, M., Illuminating Disease: An Introduction to Green Fluorescent Proteins. Oxford University Press: 2015.

14.Ormo, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.; Remington, S. J. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273 (5280), 1392-5.

15.Kojima, S.; Ohkawa, H.; Hirano, T.; Maki, S.; Niwa, H.; Ohashi, M.; Inouye, S.; Tsuji, F. I. Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GEP). Tetrahedron Lett. 1998, 39 (29), 5239-5242.

16.Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.; Prasher, D. Green fluorescent protein as a marker for gene expression. Science 1994, 263 (5148), 802-805.

17.(a) Tsien, R. Y. THE GREEN FLUORESCENT PROTEIN. Annu. Rev. Biochem. 1998, 67, 509-544; (b) Heim, R.; Prasher, D. C.; Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 1994, 91 (26), 12501-12504; (c) Tsien, R. Y. Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture). Angew. Chem. Int. Ed. 2009, 48 (31), 5612-5626.

18.(a) Hampel, S.; Chung, P.; McKellar, C. E.; Hall, D.; Looger, L. L.; Simpson, J. H. Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat. Methods 2011, 8 (3), 253-259; (b) Cai, D.; Cohen, K. B.; Luo, T.; Lichtman, J. W.; Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 2013, 10 (6), 540-547; (c) Livet, J.; Weissman, T. A.; Kang, H.; Draft, R. W.; Lu, J.; Bennis, R. A.; Sanes, J. R.; Lichtman, J. W. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450 (7166), 56-62; (d) Lichtman, J. W.; Livet, J.; Sanes, J. R. A technicolour approach to the connectome. Nat. Rev. Neurosci. 2008, 9 (6), 417-422.

19.Meech, S. R. Excited state reactions in fluorescent proteins. Chem. Soc. Rev. 2009, 38 (10), 2922-2934.

20.Brejc, K.; Sixma, T. K.; Kitts, P. A.; Kain, S. R.; Tsien, R. Y.; Ormö, M.; Remington, S. J. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 1997, 94 (6), 2306-2311.

21.Wu, L.; Burgess, K. Syntheses of Highly Fluorescent GFP-Chromophore Analogues. J. Am. Chem. Soc. 2008, 130 (12), 4089-4096.

22.Baldridge, A.; Solntsev, K. M.; Song, C.; Tanioka, T.; Kowalik, J.; Hardcastle, K.; Tolbert, L. M. Inhibition of twisting of a green fluorescent protein-like chromophore by metal complexation. Chem. Commun. 2010, 46 (31), 5686-5688.

23.Chen, K.-Y.; Cheng, Y.-M.; Lai, C.-H.; Hsu, C.-C.; Ho, M.-L.; Lee, G.-H.; Chou, P.-T. Ortho Green Fluorescence Protein Synthetic Chromophore; Excited-State Intramolecular Proton Transfer via a Seven-Membered-Ring Hydrogen-Bonding System. J. Am. Chem. Soc. 2007, 129 (15), 4534-4535.

24.Hsu, Y.-H.; Chen, Y.-A.; Tseng, H.-W.; Zhang, Z.; Shen, J.-Y.; Chuang, W.-T.; Lin, T.-C.; Lee, C.-S.; Hung, W.-Y.; Hong, B.-C.; Liu, S.-H.; Chou, P.-T. Locked ortho- and para-Core Chromophores of Green Fluorescent Protein; Dramatic Emission Enhancement via Structural Constraint. J. Am. Chem. Soc. 2014, 136 (33), 11805-11812.

25.Baldridge, A.; Feng, S.; Chang, Y.-T.; Tolbert, L. M. Recapture of GFP Chromophore Fluorescence in a Protein Host. ACS. Comb. Sci. 2011, 13 (3), 214-217.

26.Cacciarini, M.; Nielsen, M. B.; de Castro, E. M.; Marinescu, L.; Bols, M. β-Cyclodextrin as a mimetic of the natural GFP-chromophore environment. Tetrahedron Lett. 2012, 53 (8), 973-976.

27.Fery-Forgues, S.; Veesler, S.; Fellows, W. B.; Tolbert, L. M.; Solntsev, K. M. Microcrystals with Enhanced Emission Prepared from Hydrophobic Analogues of the Green Fluorescent Protein Chromophore via Reprecipitation. Langmuir 2013, 29 (47), 14718-14727.

28.Lee, J.-S.; Baldridge, A.; Feng, S.; SiQiang, Y.; Kim, Y. K.; Tolbert, L. M.; Chang, Y.-T. Fluorescence Response Profiling for Small Molecule Sensors Utilizing the Green Fluorescent Protein Chromophore and Its Derivatives. ACS. Comb. Sci. 2011, 13 (1), 32-38.

29.Yang, J.-S.; Huang, G.-J.; Liu, Y.-H.; Peng, S.-M. Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem. Commun. 2008, (11), 1344-1346.

30.Huang, G.-J.; Ho, J.-H.; Prabhakar, C.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S. Site-Selective Hydrogen-Bonding-Induced Fluorescence Quenching of Highly Solvatofluorochromic GFP-like Chromophores. Org. Lett. 2012, 14 (19), 5034-5037.

31.Cheng, C.-W.; Huang, G.-J.; Hsu, H.-Y.; Prabhakar, C.; Lee, Y.-P.; Diau, E. W.-G.; Yang, J.-S. Effects of Hydrogen Bonding on Internal Conversion of GFP-like Chromophores. II. The meta-Amino Systems. J. Phys. Chem. B 2013, 117 (9), 2705-2716.

32.Tsai, M.-S.; Ou, C.-L.; Tsai, C.-J.; Huang, Y.-C.; Cheng, Y.-C.; Sun, S.-S.; Yang, J.-S. Fluorescence Enhancement of Unconstrained GFP Chromophore Analogues Based on the Push–Pull Substituent Effect. J. Org. Chem. 2017, 82, 8031-8039.

33.Gutiérrez, S.; Martínez-López, D.; Morón, M.; Sucunza, D.; Sampedro, D.; Domingo, A.; Salgado, A.; Vaquero, J. J. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring. Chem. Eur. J. 2015, 21 (51), 18758-18763.

34.黃冠智 綠色螢光蛋白質發光團及其衍生物之合成與光化學性質之研究 =:Synthesis and photochemical properties of green fluorescence protein chromophore and its derivatives. 國立臺灣大學化學研究所博士論文 2012.

35.莊惠鈞 以增強電子施受體強度使類綠螢光蛋白發光團螢光紅移之研究 =:Fluorescence red-shifting of GFP-like chromophores by enhancing electronic donor-acceptor strength. 國立臺灣大學化學研究所碩士論文 2016.

36.Follenius-Wund, A.; Bourotte, M.; Schmitt, M.; Iyice, F.; Lami, H.; Bourguignon, J.-J.; Haiech, J.; Pigault, C. Fluorescent Derivatives of the GFP Chromophore Give a New Insight into the GFP Fluorescence Process. Biophys. J. 2003, 85 (3), 1839-1850.

37.(a) Ikejiri, M.; Tsuchino, M.; Chihara, Y.; Yamaguchi, T.; Imanishi, T.; Obika, S.; Miyashita, K. Design and Concise Synthesis of a Novel Type of Green Fluorescent Protein Chromophore Analogue. Org. Lett. 2012, 14 (17), 4406-4409; (b) Liu, X.-Y.; Shi, L.; Ding, Z.; Long, Y.-T. New insight into the application of GFP chromophore inspired derivatives: a F- fluorescent chemodosimeter. RSC Adv. 2014, 4 (96), 53557-53560; (c) Shi, L.; Li, Y.; Liu, Z.-P.; James, T. D.; Long, Y.-T. Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore. Talanta 2012, 100, 401-404; (d) Wenge, U.; Wagenknecht, H.-A. Synthetic GFP Chromophore and Control of Excited-State Proton Transfer in DNA: An Alternative Concept for Fluorescent DNA Labels with Large Apparent Stokes’ Shifts. Synthesis 2011, 2011 (03), 502-508.

38.Baranov, M. S.; Solntsev, K. M.; Baleeva, N. S.; Mishin, A. S.; Lukyanov, S. A.; Lukyanov, K. A.; Yampolsky, I. V. Red-Shifted Fluorescent Aminated Derivatives of a Conformationally Locked GFP Chromophore. Chem. Eur. J. 2014, 20 (41), 13234-13241.

39.Dickinson, M. E.; Simbuerger, E.; Zimmermann, B.; Waters, C. W.; Fraser, S. E. Multiphoton excitation spectra in biological samples. BIOMEDO 2003, 8 (3), 329-338.

40.Kummer, A. D.; Wiehler, J.; Rehaber, H.; Kompa, C.; Steipe, B.; Michel-Beyerle, M. E. Effects of Threonine 203 Replacements on Excited-State Dynamics and Fluorescence Properties of the Green Fluorescent Protein (GFP). J. Phys. Chem. B 2000, 104 (19), 4791-4798.

41.Bogdanov, A. M.; Acharya, A.; Titelmayer, A. V.; Mamontova, A. V.; Bravaya, K. B.; Kolomeisky, A. B.; Lukyanov, K. A.; Krylov, A. I. Turning On and Off Photoinduced Electron Transfer in Fluorescent Proteins by π-Stacking, Halide Binding, and Tyr145 Mutations. J. Am. Chem. Soc. 2016, 138 (14), 4807-4817.

42.Turro, N. J., Modern Molecular Photochemistry. University Science Books: 1991.

43.Hirayama, F. Intramolecular Excimer Formation. I. Diphenyl and Triphenyl Alkanes. J. Chem. Phys. 1965, 42 (9), 3163-3171.

44.Cato, M. A., Trends in Organometallic Chemistry Research. Nova Science Publishers: 2005.

45.Kirkus, M.; Janssen, R. A. J.; Meskers, S. C. J. Intramolecular Excimer Formation between 3,6-Di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione Chromophoric Groups Linked by a Flexible Alkyl Spacer. J. Phys. Chem. A 2013, 117 (23), 4828-4837.

46.Ivashkin, P. E.; Yampolsky, I. V.; Lukyanov, K. A. Synthesis and properties of chromophores of fluorescent proteins. Russ. J. Bioorganic Chem. 2009, 35 (6), 652-669.

47.Huang, G.-J.; Yang, J.-S. The N-Arylamino Conjugation Effect in the Photochemistry of Fluorescent Protein Chromophores and Aminostilbenes. Chem. Asian J. 2010, 5 (9), 2075-2085.

48.Lerestif, J. M.; Bazureau, J. P.; Hamelin, J. Cycloaddition with stabilized imidates as potential azomethines ylides : A new route to 2-imidazoline and 4-yliden-s-imidazolinone. Tetrahedron Lett. 1993, 34 (29), 4639-4642.

49.(a) Clark, T. B.; Orr, M. E.; Flynn, D. C.; Goodson, T. Synthesis and Optical Properties of Two-Photon Absorbing GFP-type Probes. J. Phys. Chem. C 2011, 115 (15), 7331-7338; (b) Baldridge, A.; Kowalik, J.; Tolbert, L. M. Efficient Synthesis of New 4-Arylideneimidazolin-5-ones Related to the GFP Chromophore by 2+3 Cyclocondensation of Arylideneimines with Imidate Ylides. Synthesis 2010, 2010 (14), 2424-2436.

50.Wang, W.; Fu, A.; You, J.; Gao, G.; Lan, J.; Chen, L. Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells. Tetrahedron 2010, 66 (21), 3695-3701.

51.(a) Makosza, M. Two-phase reactions in the chemistry of carbanions and halocarbenes. A useful tool in organic synthesis. Pure Appl. Chem. 1975, 43 (3-4), 439; (b) Solaro, R.; D''Antone, S.; Chiellini, E. Heterogeneous ethylation of phenylacetonitrile. J. Org. Chem. 1980, 45 (21), 4179-4183; (c) Halpern, M.; Sasson, Y.; Rabinovitz, M. Hydroxide ion initiated reactions under phase transfer catalysis conditions—IV. Tetrahedron 1982, 38 (21), 3183-3187.

52.Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 1988, 21 (12), 456-463.

53.Cui, X.; Deng, Y.; Shi, F. Reductive N-Alkylation of Nitro Compounds to N-Alkyl and N,N-Dialkyl Amines with Glycerol as the Hydrogen Source. ACS Catal. 2013, 3 (5), 808-811.

54.Lambert, C.; Wagener, R.; Klein, J. H.; Grelaud, G.; Moos, M.; Schmiedel, A.; Holzapfel, M.; Bruhn, T. A photoinduced mixed-valence state in an organic bis-triarylamine mixed-valence compound with an iridium-metal-bridge. Chem. Commun. 2014, 50 (77), 11350-11353.

55.Nyasse, B.; Grehn, L.; Ragnarsson, U. Mild, efficient cleavage of arenesulfonamides by magnesium reduction. Chem. Commun. 1997, (11), 1017-1018.

56.Ankner, T.; Hilmersson, G. Instantaneous Deprotection of Tosylamides and Esters with SmI2/Amine/Water. Org. Lett. 2009, 11 (3), 503-506.

57.Shohji, N.; Kawaji, T.; Okamoto, S. Ti(O-i-Pr)4/Me3SiCl/Mg-Mediated Reductive Cleavage of Sulfonamides and Sulfonates to Amines and Alcohols. Org. Lett. 2011, 13 (10), 2626-2629.

58.Cheng, D.-J.; Yan, L.; Tian, S.-K.; Wu, M.-Y.; Wang, L.-X.; Fan, Z.-L.; Zheng, S.-C.; Liu, X.-Y.; Tan, B. Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Brønsted Acid. Angew. Chem. Int. Ed. 2014, 53 (14), 3684-3687.

59.Tiekink, E. R. T.; Zukerman-Schpector, J., The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering. Wiley: 2012.

60.Voliani, V.; Bizzarri, R.; Nifosì, R.; Abbruzzetti, S.; Grandi, E.; Viappiani, C.; Beltram, F. Cis−Trans Photoisomerization of Fluorescent-Protein Chromophores. The Journal of Physical Chemistry B 2008, 112 (34), 10714-10722.

61.Chang, D.-H.; Ou, C.-L.; Hsu, H.-Y.; Huang, G.-J.; Kao, C.-Y.; Liu, Y.-H.; Peng, S.-M.; Diau, E. W.-G.; Yang, J.-S. Cooperativity and Site-Selectivity of Intramolecular Hydrogen Bonds on the Fluorescence Quenching of Modified GFP Chromophores. J. Org. Chem. 2015, 80 (24), 12431-12443.

62.De Schryver, F. C.; Collart, P.; Vandendriessche, J.; Goedeweeck, R.; Swinnen, A. M.; Van der Auweraer, M. Intramolecular excimer formation in bichromophoric molecules linked by a short flexible chain. Acc. Chem. Res. 1987, 20 (5), 159-166.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top