1.Atkins, P.; de Paula, J., Physical Chemistry for the Life Sciences. OUP Oxford: 2011.
2.Pawlizak, S. Mechanosensitive behavior of neuronal growth cones. Faculty of Physics and Earth Sciences. University of Leipzig, Germany 2009, 58.
3.Khan, M.; Khalilian, A.; Kang, S.-W. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane. Sensors 2016, 16 (2), 265.
4.Park, J. H.; Scheerer, P.; Hofmann, K. P.; Choe, H.-W.; Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 2008, 454 (7201), 183-187.
5.Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 1991, 91 (3), 415-436.
6.Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S. The Photochemistry of trans-ortho-, -meta-, and -para-Aminostilbenes. J. Am. Chem. Soc. 1999, 121 (51), 12045-12053.
7.(a) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, (29), 4332-4353; (b) Anariba, F.; Chng, L. L.; Abdullah, N. S.; Tay, F. E. H. Syntheses, optical properties, and bioapplications of the aggregation-induced emission of 2,3,4,5-tetraphenylcyclopenta-2,4-dienyl benzene derivatives. J. Mater. Chem. 2012, 22 (36), 19303-19310; (c) Tong, H.; Hong, Y.; Dong, Y.; Häussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Protein Detection and Quantitation by Tetraphenylethene-Based Fluorescent Probes with Aggregation-Induced Emission Characteristics. J. Phys. Chem. B 2007, 111 (40), 11817-11823; (d) Bandrowsky, T. L.; Carroll, J. B.; Braddock-Wilking, J. Synthesis, Characterization, and Crystal Structures of 1,1-Disubstituted-2,3,4,5-tetraphenylgermoles That Exhibit Aggregation-Induced Emission. Organometallics 2011, 30 (13), 3559-3569; (e) Luo, J.; Wang, X.; Wang, X.; Su, W. White-Light Electroluminescence with Tetraphenylethylene as Emitting Layer of Aggregation-Induced Emissions Enhancement. Chin. J. Chem . 2012, 30 (10), 2488-2494.
8.Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115 (21), 11718-11940.
9.Dong, J.; Solntsev, K. M.; Tolbert, L. M. Activation and Tuning of Green Fluorescent Protein Chromophore Emission by Alkyl Substituent-Mediated Crystal Packing. J. Am. Chem. Soc. 2009, 131 (2), 662-670.
10.Tou, S.-L.; Huang, G.-J.; Chen, P.-C.; Chang, H.-T.; Tsai, J.-Y.; Yang, J.-S. Aggregation-induced emission of GFP-like chromophores via exclusion of solvent-solute hydrogen bonding. Chem. Commun. 2014, 50 (5), 620-622.
11.Douglas, R. H.; Mullineaux, C. W.; Partridge, J. C. Long–wave sensitivity in deep–sea stomiid dragonfish with far–red bioluminescence: evidence for a dietary origin of the chlorophyll–derived retinal photosensitizer of Malacosteus niger. Phil. Trans. R. Soc. B 2000, 355 (1401), 1269-1272.
12.Nakatsu, T.; Ichiyama, S.; Hiratake, J.; Saldanha, A.; Kobashi, N.; Sakata, K.; Kato, H. Structural basis for the spectral difference in luciferase bioluminescence. Nature 2006, 440 (7082), 372-376.
13.Zimmer, M., Illuminating Disease: An Introduction to Green Fluorescent Proteins. Oxford University Press: 2015.
14.Ormo, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.; Remington, S. J. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273 (5280), 1392-5.
15.Kojima, S.; Ohkawa, H.; Hirano, T.; Maki, S.; Niwa, H.; Ohashi, M.; Inouye, S.; Tsuji, F. I. Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GEP). Tetrahedron Lett. 1998, 39 (29), 5239-5242.
16.Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.; Prasher, D. Green fluorescent protein as a marker for gene expression. Science 1994, 263 (5148), 802-805.
17.(a) Tsien, R. Y. THE GREEN FLUORESCENT PROTEIN. Annu. Rev. Biochem. 1998, 67, 509-544; (b) Heim, R.; Prasher, D. C.; Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 1994, 91 (26), 12501-12504; (c) Tsien, R. Y. Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture). Angew. Chem. Int. Ed. 2009, 48 (31), 5612-5626.
18.(a) Hampel, S.; Chung, P.; McKellar, C. E.; Hall, D.; Looger, L. L.; Simpson, J. H. Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat. Methods 2011, 8 (3), 253-259; (b) Cai, D.; Cohen, K. B.; Luo, T.; Lichtman, J. W.; Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 2013, 10 (6), 540-547; (c) Livet, J.; Weissman, T. A.; Kang, H.; Draft, R. W.; Lu, J.; Bennis, R. A.; Sanes, J. R.; Lichtman, J. W. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450 (7166), 56-62; (d) Lichtman, J. W.; Livet, J.; Sanes, J. R. A technicolour approach to the connectome. Nat. Rev. Neurosci. 2008, 9 (6), 417-422.
19.Meech, S. R. Excited state reactions in fluorescent proteins. Chem. Soc. Rev. 2009, 38 (10), 2922-2934.
20.Brejc, K.; Sixma, T. K.; Kitts, P. A.; Kain, S. R.; Tsien, R. Y.; Ormö, M.; Remington, S. J. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 1997, 94 (6), 2306-2311.
21.Wu, L.; Burgess, K. Syntheses of Highly Fluorescent GFP-Chromophore Analogues. J. Am. Chem. Soc. 2008, 130 (12), 4089-4096.
22.Baldridge, A.; Solntsev, K. M.; Song, C.; Tanioka, T.; Kowalik, J.; Hardcastle, K.; Tolbert, L. M. Inhibition of twisting of a green fluorescent protein-like chromophore by metal complexation. Chem. Commun. 2010, 46 (31), 5686-5688.
23.Chen, K.-Y.; Cheng, Y.-M.; Lai, C.-H.; Hsu, C.-C.; Ho, M.-L.; Lee, G.-H.; Chou, P.-T. Ortho Green Fluorescence Protein Synthetic Chromophore; Excited-State Intramolecular Proton Transfer via a Seven-Membered-Ring Hydrogen-Bonding System. J. Am. Chem. Soc. 2007, 129 (15), 4534-4535.
24.Hsu, Y.-H.; Chen, Y.-A.; Tseng, H.-W.; Zhang, Z.; Shen, J.-Y.; Chuang, W.-T.; Lin, T.-C.; Lee, C.-S.; Hung, W.-Y.; Hong, B.-C.; Liu, S.-H.; Chou, P.-T. Locked ortho- and para-Core Chromophores of Green Fluorescent Protein; Dramatic Emission Enhancement via Structural Constraint. J. Am. Chem. Soc. 2014, 136 (33), 11805-11812.
25.Baldridge, A.; Feng, S.; Chang, Y.-T.; Tolbert, L. M. Recapture of GFP Chromophore Fluorescence in a Protein Host. ACS. Comb. Sci. 2011, 13 (3), 214-217.
26.Cacciarini, M.; Nielsen, M. B.; de Castro, E. M.; Marinescu, L.; Bols, M. β-Cyclodextrin as a mimetic of the natural GFP-chromophore environment. Tetrahedron Lett. 2012, 53 (8), 973-976.
27.Fery-Forgues, S.; Veesler, S.; Fellows, W. B.; Tolbert, L. M.; Solntsev, K. M. Microcrystals with Enhanced Emission Prepared from Hydrophobic Analogues of the Green Fluorescent Protein Chromophore via Reprecipitation. Langmuir 2013, 29 (47), 14718-14727.
28.Lee, J.-S.; Baldridge, A.; Feng, S.; SiQiang, Y.; Kim, Y. K.; Tolbert, L. M.; Chang, Y.-T. Fluorescence Response Profiling for Small Molecule Sensors Utilizing the Green Fluorescent Protein Chromophore and Its Derivatives. ACS. Comb. Sci. 2011, 13 (1), 32-38.
29.Yang, J.-S.; Huang, G.-J.; Liu, Y.-H.; Peng, S.-M. Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem. Commun. 2008, (11), 1344-1346.
30.Huang, G.-J.; Ho, J.-H.; Prabhakar, C.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S. Site-Selective Hydrogen-Bonding-Induced Fluorescence Quenching of Highly Solvatofluorochromic GFP-like Chromophores. Org. Lett. 2012, 14 (19), 5034-5037.
31.Cheng, C.-W.; Huang, G.-J.; Hsu, H.-Y.; Prabhakar, C.; Lee, Y.-P.; Diau, E. W.-G.; Yang, J.-S. Effects of Hydrogen Bonding on Internal Conversion of GFP-like Chromophores. II. The meta-Amino Systems. J. Phys. Chem. B 2013, 117 (9), 2705-2716.
32.Tsai, M.-S.; Ou, C.-L.; Tsai, C.-J.; Huang, Y.-C.; Cheng, Y.-C.; Sun, S.-S.; Yang, J.-S. Fluorescence Enhancement of Unconstrained GFP Chromophore Analogues Based on the Push–Pull Substituent Effect. J. Org. Chem. 2017, 82, 8031-8039.
33.Gutiérrez, S.; Martínez-López, D.; Morón, M.; Sucunza, D.; Sampedro, D.; Domingo, A.; Salgado, A.; Vaquero, J. J. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring. Chem. Eur. J. 2015, 21 (51), 18758-18763.
34.黃冠智 綠色螢光蛋白質發光團及其衍生物之合成與光化學性質之研究 =:Synthesis and photochemical properties of green fluorescence protein chromophore and its derivatives. 國立臺灣大學化學研究所博士論文 2012.
35.莊惠鈞 以增強電子施受體強度使類綠螢光蛋白發光團螢光紅移之研究 =:Fluorescence red-shifting of GFP-like chromophores by enhancing electronic donor-acceptor strength. 國立臺灣大學化學研究所碩士論文 2016.36.Follenius-Wund, A.; Bourotte, M.; Schmitt, M.; Iyice, F.; Lami, H.; Bourguignon, J.-J.; Haiech, J.; Pigault, C. Fluorescent Derivatives of the GFP Chromophore Give a New Insight into the GFP Fluorescence Process. Biophys. J. 2003, 85 (3), 1839-1850.
37.(a) Ikejiri, M.; Tsuchino, M.; Chihara, Y.; Yamaguchi, T.; Imanishi, T.; Obika, S.; Miyashita, K. Design and Concise Synthesis of a Novel Type of Green Fluorescent Protein Chromophore Analogue. Org. Lett. 2012, 14 (17), 4406-4409; (b) Liu, X.-Y.; Shi, L.; Ding, Z.; Long, Y.-T. New insight into the application of GFP chromophore inspired derivatives: a F- fluorescent chemodosimeter. RSC Adv. 2014, 4 (96), 53557-53560; (c) Shi, L.; Li, Y.; Liu, Z.-P.; James, T. D.; Long, Y.-T. Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore. Talanta 2012, 100, 401-404; (d) Wenge, U.; Wagenknecht, H.-A. Synthetic GFP Chromophore and Control of Excited-State Proton Transfer in DNA: An Alternative Concept for Fluorescent DNA Labels with Large Apparent Stokes’ Shifts. Synthesis 2011, 2011 (03), 502-508.
38.Baranov, M. S.; Solntsev, K. M.; Baleeva, N. S.; Mishin, A. S.; Lukyanov, S. A.; Lukyanov, K. A.; Yampolsky, I. V. Red-Shifted Fluorescent Aminated Derivatives of a Conformationally Locked GFP Chromophore. Chem. Eur. J. 2014, 20 (41), 13234-13241.
39.Dickinson, M. E.; Simbuerger, E.; Zimmermann, B.; Waters, C. W.; Fraser, S. E. Multiphoton excitation spectra in biological samples. BIOMEDO 2003, 8 (3), 329-338.
40.Kummer, A. D.; Wiehler, J.; Rehaber, H.; Kompa, C.; Steipe, B.; Michel-Beyerle, M. E. Effects of Threonine 203 Replacements on Excited-State Dynamics and Fluorescence Properties of the Green Fluorescent Protein (GFP). J. Phys. Chem. B 2000, 104 (19), 4791-4798.
41.Bogdanov, A. M.; Acharya, A.; Titelmayer, A. V.; Mamontova, A. V.; Bravaya, K. B.; Kolomeisky, A. B.; Lukyanov, K. A.; Krylov, A. I. Turning On and Off Photoinduced Electron Transfer in Fluorescent Proteins by π-Stacking, Halide Binding, and Tyr145 Mutations. J. Am. Chem. Soc. 2016, 138 (14), 4807-4817.
42.Turro, N. J., Modern Molecular Photochemistry. University Science Books: 1991.
43.Hirayama, F. Intramolecular Excimer Formation. I. Diphenyl and Triphenyl Alkanes. J. Chem. Phys. 1965, 42 (9), 3163-3171.
44.Cato, M. A., Trends in Organometallic Chemistry Research. Nova Science Publishers: 2005.
45.Kirkus, M.; Janssen, R. A. J.; Meskers, S. C. J. Intramolecular Excimer Formation between 3,6-Di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione Chromophoric Groups Linked by a Flexible Alkyl Spacer. J. Phys. Chem. A 2013, 117 (23), 4828-4837.
46.Ivashkin, P. E.; Yampolsky, I. V.; Lukyanov, K. A. Synthesis and properties of chromophores of fluorescent proteins. Russ. J. Bioorganic Chem. 2009, 35 (6), 652-669.
47.Huang, G.-J.; Yang, J.-S. The N-Arylamino Conjugation Effect in the Photochemistry of Fluorescent Protein Chromophores and Aminostilbenes. Chem. Asian J. 2010, 5 (9), 2075-2085.
48.Lerestif, J. M.; Bazureau, J. P.; Hamelin, J. Cycloaddition with stabilized imidates as potential azomethines ylides : A new route to 2-imidazoline and 4-yliden-s-imidazolinone. Tetrahedron Lett. 1993, 34 (29), 4639-4642.
49.(a) Clark, T. B.; Orr, M. E.; Flynn, D. C.; Goodson, T. Synthesis and Optical Properties of Two-Photon Absorbing GFP-type Probes. J. Phys. Chem. C 2011, 115 (15), 7331-7338; (b) Baldridge, A.; Kowalik, J.; Tolbert, L. M. Efficient Synthesis of New 4-Arylideneimidazolin-5-ones Related to the GFP Chromophore by 2+3 Cyclocondensation of Arylideneimines with Imidate Ylides. Synthesis 2010, 2010 (14), 2424-2436.
50.Wang, W.; Fu, A.; You, J.; Gao, G.; Lan, J.; Chen, L. Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells. Tetrahedron 2010, 66 (21), 3695-3701.
51.(a) Makosza, M. Two-phase reactions in the chemistry of carbanions and halocarbenes. A useful tool in organic synthesis. Pure Appl. Chem. 1975, 43 (3-4), 439; (b) Solaro, R.; D''Antone, S.; Chiellini, E. Heterogeneous ethylation of phenylacetonitrile. J. Org. Chem. 1980, 45 (21), 4179-4183; (c) Halpern, M.; Sasson, Y.; Rabinovitz, M. Hydroxide ion initiated reactions under phase transfer catalysis conditions—IV. Tetrahedron 1982, 38 (21), 3183-3187.
52.Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 1988, 21 (12), 456-463.
53.Cui, X.; Deng, Y.; Shi, F. Reductive N-Alkylation of Nitro Compounds to N-Alkyl and N,N-Dialkyl Amines with Glycerol as the Hydrogen Source. ACS Catal. 2013, 3 (5), 808-811.
54.Lambert, C.; Wagener, R.; Klein, J. H.; Grelaud, G.; Moos, M.; Schmiedel, A.; Holzapfel, M.; Bruhn, T. A photoinduced mixed-valence state in an organic bis-triarylamine mixed-valence compound with an iridium-metal-bridge. Chem. Commun. 2014, 50 (77), 11350-11353.
55.Nyasse, B.; Grehn, L.; Ragnarsson, U. Mild, efficient cleavage of arenesulfonamides by magnesium reduction. Chem. Commun. 1997, (11), 1017-1018.
56.Ankner, T.; Hilmersson, G. Instantaneous Deprotection of Tosylamides and Esters with SmI2/Amine/Water. Org. Lett. 2009, 11 (3), 503-506.
57.Shohji, N.; Kawaji, T.; Okamoto, S. Ti(O-i-Pr)4/Me3SiCl/Mg-Mediated Reductive Cleavage of Sulfonamides and Sulfonates to Amines and Alcohols. Org. Lett. 2011, 13 (10), 2626-2629.
58.Cheng, D.-J.; Yan, L.; Tian, S.-K.; Wu, M.-Y.; Wang, L.-X.; Fan, Z.-L.; Zheng, S.-C.; Liu, X.-Y.; Tan, B. Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Brønsted Acid. Angew. Chem. Int. Ed. 2014, 53 (14), 3684-3687.
59.Tiekink, E. R. T.; Zukerman-Schpector, J., The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering. Wiley: 2012.
60.Voliani, V.; Bizzarri, R.; Nifosì, R.; Abbruzzetti, S.; Grandi, E.; Viappiani, C.; Beltram, F. Cis−Trans Photoisomerization of Fluorescent-Protein Chromophores. The Journal of Physical Chemistry B 2008, 112 (34), 10714-10722.
61.Chang, D.-H.; Ou, C.-L.; Hsu, H.-Y.; Huang, G.-J.; Kao, C.-Y.; Liu, Y.-H.; Peng, S.-M.; Diau, E. W.-G.; Yang, J.-S. Cooperativity and Site-Selectivity of Intramolecular Hydrogen Bonds on the Fluorescence Quenching of Modified GFP Chromophores. J. Org. Chem. 2015, 80 (24), 12431-12443.
62.De Schryver, F. C.; Collart, P.; Vandendriessche, J.; Goedeweeck, R.; Swinnen, A. M.; Van der Auweraer, M. Intramolecular excimer formation in bichromophoric molecules linked by a short flexible chain. Acc. Chem. Res. 1987, 20 (5), 159-166.