跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高雁綾
論文名稱:應用低折射率導模共振光柵結構及Nd3+摻雜的NaYF4多層核殼結構之上轉換螢光生物探針於人類心臟肌鈣蛋白I之感測
論文名稱(外文):Sensitivity assays for human cardiac troponin I using low refractive index resonant waveguide grating and Nd3+-doped NaYF4 multilayer core-shell structure upconversion bioprobes
指導教授:許佳振
指導教授(外文):HSU, CHIA-CHEN
口試委員:甘宏志陳永恩
口試委員(外文):KAN, HUNG-CHIHMICHAEL W.Y. CHAN
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:110
中文關鍵詞:低折射率導模共振光柵導模共振效應上轉換螢光奈米粒子人類心臟肌鈣蛋白
外文關鍵詞:resonant waveguide gratingUpconversion Nanoparticlesguided mode resonancehuman cardiac troponin I
相關次數:
  • 被引用被引用:3
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
由Nd3+摻雜的上轉換奈米粒子(up-conversion nanoparticle, UCNP)因其激發波長在793nm處有高組織穿透深度和低組織過熱效應,使它在生物應用上有著巨大的潛力。此外,將Nd3+摻雜的UCNP沉積在水環境中的低折射率共振波導光柵(resonant waveguide grating, RWG)上,導模共振效應增強了RWG頂部的激發電場,使上轉換螢光可以大幅增強。人類心臟肌鈣蛋白(Human cardiac troponin I, cTnI)被認為是心肌梗塞(acute myocardial infarction, AMI) 診斷的黃金標準,因為AMI僅由心肌損傷時引起,使得早期發現和治療相當重要。因此,本研究以低折射率導模共振光柵作為靈敏的生物檢測平台與Nd3+摻雜NaYF4的多層殼核結構上轉換螢光作為生物螢光訊號探針,對人類心臟肌鈣蛋白(cTnI)進行夾心型免疫生物測定,得到檢測極限為0.0254pg/ml,滿足臨床應用的要求,並且可用於AMI的早期診斷。
Highly luminescent 793 nm excited Nd3 +-doped up-conversion nanoparticles (UCNPs) have shown great promise in bio-applications, benefiting from the high tissue penetration depth and low tissue overheating effect at 793 nm. Furthermore, as the Nd3+-doped UCNPs are deposited on a low refractive index resonant waveguide grating (RWG) in aqueous environment, UCL generated from the UCNPs can be greatly enhanced thanks to the guided mode resonance (GMR) enhanced excitation field atop of the RWG. Therefore, the combination of UCNPs bioprobe and low refractive index RWG can be a good platform for biosensing applications. Human cardiac troponin I (cTnI) is considered to be the gold standard for the diagnosis of myocardial infarction due to its presence only resulting from direct damage of myocardium. Herein, we synthesize Nd3+-doped UCNPs with multilayer core-shell structure (NaYF4:Yb,Tm@NaYF4:Yb,Nd@NaYF4) as sensitive upconversion luminescence (UCL) bioprobes, and developed a sensitive extended sandwich-type strategy for the detection of human cardiac troponin I (cTnI) with the help of GMR effect. The limit of detection calculated to be around 0.0254 pg/ml could meet the requirements for clinical application, and it can be used for early diagnosis of AMI.
目錄 a
圖目錄 d
表目錄 l
致謝 m
中文摘要 n
Abstract o
第一章 緒論 1
1.1上轉換螢光與材料簡介 1
1.1.1上轉換螢光奈米粒子發光原理 1
1.1.2上轉換螢光材料簡介 5
1.1.3 Nd3+,Yb3+摻雜NaYF4多層殼核結構上轉換螢光奈米粒子 13
1.2上轉換螢光奈米粒子之生物應用 20
1.2.1上轉換螢光奈米粒子表面改性簡介與應用 20
1.2.2上轉換螢光奈米粒子應用於生物免疫測定 24
1.3導模共振光柵的簡介及應用 29
1.4低折射率材料的簡介及應用 36
1.5免疫測定之抗體固定策略 40
1.6研究動機與目的 42
第二章 實驗原理 43
2.1導模共振效應原理 43
2.2嚴格耦合波理論(Rigorous Coupled Analysis, RCWA) 46
2.3雙光束干涉原理 47
第三章 實驗設計與模擬計算 49
3.1 實驗樣品設計 49
3.2 導模共振光柵結構之RCWA模擬與計算結果 51
第四章 樣品製備 55
4.1製作光柵軟模 55
4.1.1玻璃基板清洗 55
4.1.2旋轉塗佈光阻劑 55
4.1.3雙光束干涉微影技術製作一維光柵結構 57
4.1.4製作PDMS光柵軟模 59
4.1.5製作DR1保護層 60
4.2製作低折射率材料導模共振光柵結構 61
4.2.1配置低折射率材料溶液 61
4.2.2製作低折射率材料薄膜 62
4.2.3奈米壓印光柵結構 62
4.2.4蒸鍍TiO2波導層 63
4.3上轉換螢光訊號探針之合成 63
4.3.1合成單核(Core)結構上轉換螢光奈米粒子NaYF4: Yb3+,Tm3+ 64
4.3.2合成殼核結構(Core–Shell)上轉換螢光奈米粒子NaYF4: Yb3+,Tm3+@ NaYF4: Yb3+,Nd3+ 66
4.3.3合成雙殼核結構(Core–Double shell)上轉換螢光奈米粒子NaYF4: Yb3+,Tm3+@ NaYF4: Yb3+,Nd3+@ NaYF4 68
4.3.4上轉換螢光奈米粒子之表面改性 71
4.3.5合成上轉換螢光訊號探針 74
4.4人類心肌鈣蛋白之夾心型免疫螢光測定 76
4.4.1導模共振光柵結構表面之TiO2胺基官能化 77
4.4.2抗體固定於導模共振光柵結構表面 78
4.4.3人類心臟肌鈣蛋白固定 78
4.4.4阻斷非特異性結合 79
4.4.5上轉換螢光訊號探針捕獲人類心臟肌鈣蛋白 80
4.4.6封裝樣品 80
第五章 實驗架設與量測 81
5.1雙光束干涉實驗 81
5.2吸收光譜量測實驗 82
5.3穿透光譜量測實驗 83
5.4螢光訊號量測實驗 84
第六章 實驗結果與討論 86
6.1上轉換螢光奈米粒子量測 86
6.1.1上轉換螢光奈米粒子結構量測 86
6.1.2上轉換螢光奈米粒子吸收光譜與螢光訊號量測 88
6.2導模共振光柵結構與穿透/螢光光譜量測 91
6.2.1導模共振光柵結構 91
6.2.2導模共振光柵穿透光譜量測 92
6.2.3導模共振光柵螢光光譜量測 96
6.3阻斷步驟(blocking step)測試 97
6.4夾心型免疫螢光量測 99
第七章結論 104
參考文獻 106


[1]X. Liu, C. H. Yan, and J. A. Capobianco, "Photon upconversion nanomaterials," Chemical Society Reviews, vol. 44, no. 6, pp. 1299-1301, 2015.
[2]G. Chen, H. Qiu, P. N. Prasad, and X. Chen, "Upconversion nanoparticles: design, nanochemistry, and applications in theranostics," Chemical Reviews, vol. 114, no. 10, pp. 5161-5214, 2014.
[3]D. R. Gamelin and H. U. Güdel, "Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy," Accounts Of Chemical Research, vol. 33, no. 4, pp. 235-242, 2000.
[4]M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, "Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review," Analytica Chimica Acta, vol. 832, pp. 1-33, 2014.
[5]邱顯文, "應用低折射率導模共振光柵結構提升稀土奈米粒子之上轉換螢光訊號," 碩士論文, 國立中正大學物理學系研究所, 2016.
[6]Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, and J. Lu, "Tunable lifetime multiplexing using luminescent nanocrystals," Nature Photonics, vol. 8, no. 1, p. 32, 2014.
[7]C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials," Solar Energy Materials And Solar Cells, vol. 91, no. 4, pp. 238-249, 2007.
[8]B. Richards, "Luminescent layers for enhanced silicon solar cell performance: Down-conversion," Solar Energy Materials And Solar Cells, vol. 90, no. 9, pp. 1189-1207, 2006.
[9]X. Liu, J. Zhao, Y. Sun, K. Song, Y. Yu, C. Du, X. Kong, and H. Zhang, "Ionothermal synthesis of hexagonal-phase NaYF4: Yb 3+, Er 3+/Tm 3+ upconversion nanophosphors," Chemical Communications, no. 43, pp. 6628-6630, 2009.
[10]S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, "Highly efficient multicolour upconversion emission in transparent colloids of lanthanide‐doped NaYF4 nanocrystals," Advanced Materials, vol. 16, no. 23‐24, pp. 2102-2105, 2004.
[11]F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, "Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping," Nature, vol. 463, no. 7284, p. 1061, 2010.
[12]F. Auzel, "Upconversion and anti-stokes processes with f and d ions in solids," Chemical Reviews, vol. 104, no. 1, pp. 139-174, 2004.
[13]F. Wang and X. Liu, "Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals," Chemical Society Reviews, vol. 38, no. 4, pp. 976-989, 2009.
[14]M. Haase and H. Schäfer, "Upconverting nanoparticles," Angewandte Chemie International Edition, vol. 50, no. 26, pp. 5808-5829, 2011.
[15]S. Wilhelm, "Perspectives for upconverting nanoparticles," ACS Nano, vol. 11, no. 11, pp. 10644-10653, 2017.
[16]S. Han, R. Deng, X. Xie, and X. Liu, "Enhancing luminescence in lanthanide‐doped upconversion nanoparticles," Angewandte Chemie International Edition, vol. 53, no. 44, pp. 11702-11715, 2014.
[17]F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, "The active‐core/active‐shell approach: A strategy to enhance the upconversion luminescence in lanthanide‐doped nanoparticles," Advanced Functional Materials, vol. 19, no. 18, pp. 2924-2929, 2009.
[18]V. Muhr, S. Wilhelm, T. Hirsch, and O. S. Wolfbeis, "Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces," Accounts Of Chemical Research, vol. 47, no. 12, pp. 3481-3493, 2014.
[19]Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, "Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect," ACS Nano, vol. 7, no. 8, pp. 7200-7206, 2013.
[20]W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, "Optical temperature sensing with minimized heating effect using core–shell upconversion nanoparticles," RSC Advances, vol. 6, no. 26, pp. 21540-21545, 2016.
[21]A. Sedlmeier and H. H. Gorris, "Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications," Chemical Society Reviews, vol. 44, no. 6, pp. 1526-1560, 2015.
[22]W. Kong, T. Sun, B. Chen, X. Chen, F. Ai, X. Zhu, M. Li, W. Zhang, G. Zhu, and F. Wang, "A general strategy for ligand exchange on upconversion nanoparticles," Inorganic chemistry, vol. 56, no. 2, pp. 872-877, 2017.
[23]L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, "Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors," Biomaterials, vol. 31, no. 27, pp. 7078-7085, 2010.
[24]G. Hu, W. Sheng, Y. Zhang, J. Wang, X. Wu, and S. Wang, "Upconversion nanoparticles and monodispersed magnetic polystyrene microsphere based fluorescence immunoassay for the detection of sulfaquinoxaline in animal-derived foods," Journal Of Agricultural And Food Chemistry, vol. 64, no. 19, pp. 3908-3915, 2016.
[25]Z. Liu, B. Yang, B. Chen, M. He, and B. Hu, "Upconversion nanoparticle as elemental tag for the determination of alpha-fetoprotein in human serum by inductively coupled plasma mass spectrometry," Analyst, vol. 142, no. 1, pp. 197-205, 2017.
[26]J.-C. Boyer and F. C. Van Veggel, "Absolute quantum yield measurements of colloidal NaYF 4: Er3+, Yb3+ upconverting nanoparticles," Nanoscale, vol. 2, no. 8, pp. 1417-1419, 2010.
[27]J. He, W. Zheng, F. Ligmajer, C. F. Chan, Z. Bao, K. L. Wong, X. Chen, J. Hao, J. Dai, and S. F. Yu, "Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@ SiO 2@ CaF 2: Yb 3+, Er 3+ hybrid core–shell–satellite nanostructures," Light: Science & Applications, vol. 6, no. 5, p. e16217, 2017.
[28]J. Liao, Z. Yang, H. Wu, D. Yan, J. Qiu, Z. Song, Y. Yang, D. Zhou, and Z. Yin, "Enhancement of the up-conversion luminescence of Yb 3+/Er 3+ or Yb 3+/Tm 3+ co-doped NaYF4 nanoparticles by photonic crystals," Journal of Materials Chemistry C, vol. 1, no. 40, pp. 6541-6546, 2013.
[29]Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, "Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4: Yb 3+, Tm 3+/Er 3+ nanocrystals," Chemical Communications, vol. 49, no. 36, pp. 3781-3783, 2013.
[30]J. H. Lin, H. Y. Liou, C. D. Wang, C. Y. Tseng, C. T. Lee, C. C. Ting, H. C. Kan, and C. C. Hsu, "Giant enhancement of upconversion fluorescence of NaYF4: Yb3+, Tm3+ nanocrystals with resonant waveguide grating substrate," ACS Photonics, vol. 2, no. 4, pp. 530-536, 2015.
[31]N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotechnology, Article vol. 2, p. 515, 07/29/online 2007.
[32]J. H. Lin, C.-Y. Tseng, C.-T. Lee, H.-C. Kan, and C. C. Hsu, "Guided-mode resonance enhanced excitation and extraction of two-photon photoluminescence in a resonant waveguide grating," Optics Express, vol. 21, no. 20, pp. 24318-24325, 2013.
[33]J. H. Lin, C. Y. Tseng, C. T. Lee, J. F. Young, H. C. Kan, and C. C. Hsu, "Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating," Optics Express, vol. 22, no. 3, pp. 2790-2797, 2014.
[34]R. Horvath, H. C. Pedersen, and N. B. Larsen, "Demonstration of reverse symmetry waveguide sensing in aqueous solutions," Applied Physics Letters, vol. 81, no. 12, pp. 2166-2168, 2002.
[35]D. T. Vu, H. W. Chiu, R. Nababan, Q. M. Le, S. W. Kuo, L. K. Chau, C. C. Ting, H. C. Kan, and C. C. Hsu, "Enhancing upconversion luminescence emission of rare earth nanophosphors in aqueous solution with thousands fold enhancement factor by low refractive index resonant waveguide grating," ACS Photonics, 2018.
[36]J. Wang, C. Yang, Y. Liu, C. Zhang, C. Zhang, M. Wang, J. Zhang, X. Cui, R. Ding, and Y. Xu, "Broadband antireflective double-layer mesoporous silica coating with strong abrasion-resistance for solar cell glass," RSC Advances, vol. 6, no. 30, pp. 25191-25197, 2016.
[37]Y. Hanada, T. Ogawa, K. Koike, and K. Sugioka, "Making the invisible visible: a microfluidic chip using a low refractive index polymer," Lab On A Chip, vol. 16, no. 13, pp. 2481-2486, 2016.
[38]X. A. Zhang, A. Bagal, E. C. Dandley, J. Zhao, C. J. Oldham, B. I. Wu, G. N. Parsons, and C. H. Chang, "Ordered 3D Thin‐Shell Nanolattice Materials with Near‐Unity Refractive Indices," Advanced Functional Materials, vol. 25, no. 42, pp. 6644-6649, 2015.
[39]C.-C. Liu, J.-G. Li, and S.-W. Kuo, "Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices," RSC Advances, vol. 4, no. 39, pp. 20262-20272, 2014.
[40]N. G. Welch, J. A. Scoble, B. W. Muir, and P. J. Pigram, "Orientation and characterization of immobilized antibodies for improved immunoassays," Biointerphases, vol. 12, no. 2, p. 02D301, 2017.
[41]S. K. Vashist, "Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications," Diagnostics, vol. 2, no. 3, pp. 23-33, 2012.
[42]G. M. Burrow and T. K. Gaylord, "Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures," Micromachines, vol. 2, no. 2, pp. 221-257, 2011.
[43]N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, "Fabrication of two-and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Optics Express, vol. 13, no. 23, pp. 9605-9611, 2005.
[44]蔡宜展, "應用低折射率導模共振光柵結構提升水環境中之Nd3+摻雜NaYF4多層殼核結構奈米粒子之上轉換螢光," 碩士論文, 國立中正大學物理學系研究所, 2017.
[45]J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, "3D Micro‐and Nanostructures via Interference Lithography," Advanced Functional Materials, vol. 17, no. 16, pp. 3027-3041, 2007.
[46]P. Kannan, F. A. Rahim, X. Teng, R. Chen, H. Sun, L. Huang, and D.-H. Kim, "Enhanced emission of NaYF4: Yb, Er/Tm nanoparticles by selective growth of Au and Ag nanoshells," RSC Advances, vol. 3, no. 21, pp. 7718-7721, 2013.
[47]Q. Chen, C. Wang, L. Cheng, W. He, Z. Cheng, and Z. Liu, "Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy," Biomaterials, vol. 35, no. 9, pp. 2915-2923, 2014.
[48]O. Berezhetska, B. Liberelle, G. De Crescenzo, and F. Cicoira, "A simple approach for protein covalent grafting on conducting polymer films," Journal of Materials Chemistry B, vol. 3, no. 25, pp. 5087-5094, 2015.
[49]A. Muaz, U. Hashim, N. Azizah, M. M. Arshad, K. Foo, A. Ruslinda, R. Ayub, S. C. Gopinath, and C. Voon, "Integrated of IDEs with TiO2 nanoparticles thin films for pH sensor," in Micro and Nanoelectronics (RSM), 2015 IEEE Regional Symposium on, 2015, pp. 1-4: IEEE.
[50]S. Upasham, A. Tanak, and S. Prasad, "Cardiac troponin biosensors: where are we now?," Advanced Health Care Technologies, vol. 4, pp. 1-13, 2018.
[51]I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, "A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces," Optics Express, vol. 17, no. 15, pp. 13222-13235, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊