跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯欣妙
研究生(外文):Shin-Miao Hou
論文名稱:探討咖啡酸苯乙酯對卵白蛋白致敏呼吸道發炎小鼠之調節機制
論文名稱(外文):Study the Mechanisms of Caffeic Acid Phenethyl Ester on Modulating OVA-Sensitized Murine Model of Airway Inflammation
指導教授:吳文勉楊文欽楊文欽引用關係
指導教授(外文):Wen-Mein WuWen-Chin Yang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:咖啡酸苯乙酯呼吸道發炎模式卵白蛋白抗發炎作用
外文關鍵詞:caffeic acid phenethyl esterairway inflammation modelovalbuminanti-inflammatory activity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:2
近來國人飲食習慣與生活環境改變,導致過敏性疾病如氣喘之罹患率逐年增加。先前研究發現餵食蜂膠組小鼠的呼吸道阻力值較控制組低,其脾臟細胞分泌之IFN- (interferon-) 較控制組增加,而IL-10 (interleukin-10) 分泌量則降低,推測蜂膠可能具改善氣喘之功能。為探討蜂膠成份改善呼吸道發炎疾病之可能機制,以蜂膠中之有效成份咖啡酸苯乙酯(caffeic acid phenethyl ester; CAPE) 為研究材料,利用卵白蛋白 (ovalbumin; OVA) 致敏BALB/c雌鼠產生過敏反應,再以吸入OVA誘發小鼠呼吸道發炎症狀。犧牲小鼠後,將腹腔抽出細胞及脾臟細胞與CAPE共同培養,探討其對脾臟細胞增生與細胞培養上清液中細胞激素的影響。另以轉殖IFN-質體之人類Jurkat T細胞株與CAPE共同培養,測定CAPE對細胞激素IFN-基因表現之影響。結果顯示,體外培養系統中,脾臟細胞在有絲分裂劑刺激下,包括細胞增生反應、IFN-與IL-4細胞激素分泌量均受CAPE抑制,Jurkat T細胞之IFN-基因表現亦受CAPE抑制,CAPE對於以LPS (lipopolysaccharides) 刺激腹腔抽出細胞培養上清液中IL-6與TNF- (tumor necrosis factor-) 有促進分泌之趨勢。此結果與先前研究活體動物餵食蜂膠之免疫反應不ㄧ致,故另外設計探討CAPE是否具調節呼吸道發炎小鼠功效之試驗。活體試驗中,將呼吸道發炎小鼠分為控制組、CAPE組 (每公斤小鼠每日管餵5、10或20毫克) 及藥物治療組 (每日管餵0.1毫克prednisolone),再另設置未經致敏的non-treat組,共分為六組,管餵五天後犧牲小鼠,分析肺部沖洗液中嗜酸性白血球數目與發炎相關蛋白質含量,測定淋巴細胞增生情形,並分析腹腔細胞與脾臟細胞培養上清液中細胞激素分泌量。實驗結果發現,餵食CAPE組小鼠肺部沖洗液中嗜酸性白血球數目顯著較控制組低,以Con A (concanavalin A) 刺激脾臟細胞培養上清液中,IL-5細胞激素亦顯著低於控制組,餵食20毫克CAPE組小鼠脾臟中,分泌IFN-細胞激素的細胞百分比顯著高於控制組,CAPE亦促進T與B細胞增生,且餵食10或20毫克CAPE組小鼠腹腔細胞培養上清液中,IL-6與TNF-促發炎細胞激素分泌量有抑制情形。推測CAPE可能藉由減少IL-5細胞激素分泌,而抑制嗜酸性白血球趨化聚集至肺部氣管,透過其抗發炎作用而有助於改善呼吸道發炎症狀,研究結果將可作為開發緩解氣喘之佐劑的參考。
The dietary pattern and environmental status has changed, which in term causing an increasing rate of allergic disease such as asthma. Previous study showed that the ovalbumin (OVA)-sensitized mice fed with propolis shown lower air hyperresponsiveness, and the Interferon- (IFN-) secreted from splenocytes of propolis-fed groups was higher and interleukin-10 (IL-10) was lower than control group. According to this, we proposed that propolis has beneficial effects on asthma. The aim of the study will focus on finding the mechanisms of the compounds in propolis on OVA-sensitized murine model of airway inflammation. Firstly, we selected caffeic acid phenethyl ester (CAPE), an active component of propolis, as target material for elucidate the mechanism. BALB/c female mice were immunized and sensitized exposing to OVA antigen to establish the asthma animal model. The splenocytes and peritoneal exudated cells isolated from BALB/c mice were incubated with different concentration CAPE. The effects of CAPE on splenocytes proliferation and cytokine secretion profiles have been done. Additionally, gene transfected plasmid Jurkat cells were incubated with CAPE, and then the IFN- gene expression by DLR assay was to be concerned. Our data showed that the proliferative response, IFN- and IL-4 cytokines secretion of splenocytes which been stimulated with mitogen were inhibited when cocultured with CAPE. The IFN- gene expression on Jurkat cells was inhibited by CAPE. However, CAPE could stimulate IL-6 and tumor necrosis factor- (TNF-) secretion from peritoneal exudated cells. As previous described in vitro model didn’t give the reproducible results when compare to the pilot study of in vivo asthma animal model. So we developed an airway inflammation model for further evaluated the therapeutic roles on CAPE. In vivo study, airway inflammation model in BALB/c mice were divided into six groups including control group, CAPE group (5, 10 or 20 mg/kg BW/day), prednisolone group (0.1 mg/day), and non-treat group. Mice were sacrified after administered with above treatments for five days by tube feeding or not. The results showed that eosinophilia in bronchoalveolar lavage fluid (BALF) of the asthma animal model receiving CAPE were significantly lower than control group, and IL-5 secretion of splenocytse stimulated with Con A (concanavalin A) had the same trend. The results of intracellular staining demonstrated that the percentage of IFN- positive splenocytes from CAPE-administered mice (20 mg/kg BW/day CAPE group) were significant higher than control group. The proliferative response of T cells and B cells was increased by CAPE. Mice receiving CAPE (10 or 20 mg/kg BW/day) shown decreased secretion of the pro-inflammatory cytokines, such as IL-6 and TNF- compare to control group. According to these finding, we propose CAPE may inhibit the recruitment of eosinophils to airways by decreasing IL-5 cytokine secretion. The anti-inflammatory effect of CAPE will be helpful on airway inflammation. The study may provide novel applicable therapic effect on asthma.
中文摘要………………………………………………………………………………. I
英文摘要……………………………………………………………………………... III
目錄…………………………………………………………………………………….V
圖目錄……………………………………………………………………………….VIII
縮寫表………………………………………………………………………………….X
第一章 前言………………………………………………………………………… 1
第二章 文獻回顧…………………………………………………………………… 3
第一節 咖啡酸苯乙酯…………………………………………….…………... 3
2.1.1 咖啡酸苯乙酯簡介………………………………………...…. 3
2.1.2 咖啡酸苯乙酯與蜂膠之生物活性………………………….... 3
2.1.3 咖啡酸苯乙酯與蜂膠對免疫調節之影響………………….... 5
第二節 免疫系統………………………………………………………….…… 6
2.2.1 先天性與適應性免疫…………………………………...……. 6
2.2.2 輔助型T細胞分泌之細胞激素類型……………………….... 7
2.2.3 過敏反應的發生……………………………………………… 8
第三節 氣喘……………………………………………………………………. 8
2.3.1 氣喘簡介……………………………………………………… 8
2.3.2 氣喘發生的機制……………………………………………… 9
2.3.3 發炎相關之化學趨化因子………………………………….. 10
2.3.4 治療氣喘的方式…………………………………………….. 10
第四節 氣喘動物模式之建立………………………………………………... 11
第三章 研究動機與目的…………………………………………………………... 13
第四章 實驗設計…………………………………………………………………... 15
第五章 材料與方法………………………………………………………………... 16
第一節 探討CAPE對氣喘模式小鼠之活體外 (ex vivo) 試驗:
CAPE對氣喘模式小鼠淋巴細胞之影響…………………………… 16
5.1.1 試驗物質CAPE配製………………………………………. 16
5.1.2 氣喘模式動物的建立……………………………………….. 19
5.1.3 實驗動物犧牲……………………………………………….. 20
5.1.4 將CAPE與分離自氣喘模式動物之活體細胞進行
體外實驗……………………………………………………..21
5.1.5 血清中抗體與細胞培養上清液中細胞激素之測定……….. 23
第二節 CAPE在in vitro條件下調控Jurkat T細胞株分泌IFN-
之情形………………………………………………………………... 26
5.2.1 將Jurkat T細胞進行電穿孔 (Electroporation)………….. 26
5.2.2 Jurkat T細胞、T細胞之活化劑或CAPE共同培養
之條件………………………………………………………. 27
5.2.3 分析Jurkat T細胞中透過質體轉入的IFN-表現量……… 28
第三節 CAPE之活體試驗:探討餵食CAPE對氣喘模式動物免疫
調節作用之影響……………………………………………………... 29
5.3.1 實驗動物…………………………………………………….. 29
5.3.2 實驗動物犧牲……………………………………………….. 31
5.3.3 免疫功能相關之測定……………………………………….. 34
5.3.4 實驗試劑與配製…………………………………………….. 40
第四節 統計方法……………………………………………………………... 42
第六章 結果與討論………………………………………………………………... 43
第一節 探討CAPE對氣喘模式小鼠之活體外 (ex vivo) 試驗:
CAPE對氣喘模式小鼠淋巴細胞之影響…………………………....43
6.1.1 CAPE對氣喘模式小鼠腹腔細胞培養上清液中促發炎
    細胞激素分泌量之影響…………………………………... 43
6.1.2 CAPE對氣喘模式小鼠脾臟細胞培養上清液中細胞激素
分泌量之影響…………………………………………..44
6.1.3 CAPE對氣喘小鼠脾臟細胞增生反應之影響………………45
第二節 CAPE在in vitro條件下調控Jurkat T細胞株分泌IFN-之
情形……………………………………………………………………47
第三節 CAPE之活體試驗:探討餵食CAPE對氣喘模式動物免疫
調節作用之影響…………………………………………………….. 48
6.3.1 餵食CAPE對氣喘模式小鼠生長體重之影響 48
6.3.2 餵食CAPE對氣喘模式小鼠血清中OVA特異性
        IgE抗體生成量之影響……………………………………49
      6.3.3 餵食CAPE對氣喘模式小鼠肺部沖洗液中免疫相關
          分析之影響………………………………………………...49
      6.3.4 餵食CAPE對氣喘模式小鼠腹腔細胞培養上清液中
          促發炎細胞激素分泌量之影響……………………….......50
      6.3.5 餵食CAPE對氣喘模式小鼠脾臟細胞免疫相關分析
          之影響………………………………………………………51
第七章 總結…………………………………………………………………………54
圖………………………………………………………………………………………56
參考文獻………………………………………………………………………………92


圖 目 錄

圖一 OVA致敏之氣喘模式動物建立之流程……………………………… 56
圖二 CAPE對氣喘小鼠腹腔細胞培養上清液中IL-6分泌量之影響……. 57
圖三 CAPE對氣喘小鼠腹腔細胞培養上清液中TNF-分泌量之影響…. 58
圖四 CAPE對氣喘小鼠脾臟細胞以Con A刺激培養上清液中
      IFN-分泌量之影響…………………………………………………. 59
圖五 CAPE對氣喘小鼠脾臟細胞以Con A刺激培養上清液中
      IL-4分泌量之影響…………………………………………………...60
圖六 CAPE對氣喘小鼠脾臟細胞以不同有絲分裂劑刺激培養
      增生反應之影響…………………………………………………….. 61
圖七 CAPE對氣喘小鼠脾臟細胞以OVA抗原刺激培養增生反
      應之影響……………………………………………………………...63
圖八 不同濃度CAPE對Jurkat cells之IFN-基因表現的影響………… 64
圖九 CAPE之活體試驗流程圖……………………………………………. 66
圖十 CAPE對小鼠生長體重之影響………………………………………. 67
圖十一 餵食CAPE對於氣喘小鼠血清中OVA特異性IgE抗體生
      成量之影響………………………………………………………….. 68
圖十二 餵食CAPE對於氣喘小鼠肺部沖洗液中發炎細胞巨集情形
      之影響……………………………………………………………….. 69
圖十三 餵食CAPE對於氣喘小鼠肺部沖洗液中IL-5分泌量之影響……… 71
圖十四 餵食CAPE對於氣喘小鼠肺部沖洗液中Eotaxin分泌量之
影響…………………………………………………………………… 72
圖十五 餵食CAPE對於氣喘小鼠肺部沖洗液中MCP-1分泌量之
影響…………………………………………………………………… 73
圖十六 餵食CAPE對氣喘小鼠腹腔細胞以LPS刺激培養上清液
     中IL-6分泌量之影響…………………………………………………. 74
圖十七 餵食CAPE對氣喘小鼠腹腔細胞以LPS刺激培養上清液
     中TNF-分泌量之影響……………………………………………….. 75
圖十八 餵食CAPE對氣喘小鼠腹腔細胞以LPS刺激培養上清液
     中IL-1β分泌量之影響……………………………………………….. 76
圖十九 餵食CAPE對氣喘小鼠腹腔細胞以LPS刺激培養上清液
     中MCP-1分泌量之影響……………………………………………… 77
圖二十 餵食CAPE對氣喘小鼠脾臟細胞以不同有絲分裂劑刺激增
     生反應之影響………………………………………………………….. 78
圖二十一 餵食CAPE對氣喘小鼠脾臟細胞以不同濃度OVA抗原刺激
     增生反應之影響……………………………………………………….. 80
圖二十二 氣喘小鼠脾臟細胞以PMA與ionomycin刺激培養6小時後,
     會分泌IFN- (A)或IL-4 (B) 的CD3 T細胞百分比………………… 81
圖二十三 餵食CAPE對氣喘小鼠脾臟細胞(B)或CD3 T細胞(A)內
IFN-之表現情形……………………………………………………... 82
圖二十四 餵食CAPE對氣喘小鼠脾臟細胞(B)或CD3 T細胞(A)內
IL-4之表現情形……………………………………………………… 84
圖二十五 餵食CAPE對氣喘小鼠脾臟細胞以Con A刺激培養上清液
     中IFN-分泌量之影響………………………………………………… 86
圖二十六 餵食CAPE對氣喘小鼠脾臟細胞以Con A刺激培養上清液
     中IL-4分泌量之影響…………………………………………………. 87
圖二十七 餵食CAPE對氣喘小鼠脾臟細胞以Con A刺激培養上清液
     中IL-5分泌量之影響…………………………………………………. 88
圖二十八 餵食CAPE對氣喘小鼠脾臟細胞以Con A刺激培養上清液
     中IL-10分泌量之影響………………………………………………... 89
吳玉琳 (2003). 蜂膠對氣喘模式實驗小鼠之免疫調節功效,私立輔仁大學食品營養學系碩士論文。
陳顯東 (2002). 小青龍湯對氣喘緩解期小鼠塵螨再誘發之免疫調節作用,私立中國醫藥學院中國醫學研究所碩士論文。
莊雅惠 (2004). 以氣喘的小鼠模式研究CD95 Ligand基因在呼吸道發炎及免疫調節細胞的影響,國立台灣大學醫學院免疫學研究所博士論文。
Alam R, York J, Boyars M, Stafford S, Grant JA, Lee J, For-sythe P, Sim T, and Ida N (1996). Increased MCP-1, RANTES and MIP-1 in bronchoalveolar lavage fluid of allergic asthmatic patients. Am J Respir Crit Care Med 153: 1398-1404.
Ansorge S, Reinhold D and Lendeckel U (2003). Propolis and some of its constituents down-regulate DNA synthesis an inflammatory cytokine production but induce TGF-1 production of human immyne cells. Z Naturforsch 58c: 580-589.
Azzawi MB, Bradley PK, Jeffery AJF, Wardlaw AJ, Knowles G, Assoufi B, Collins JV, Durham S, and Kay AB (1990). Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis 142: 1407-1413.
Bacharier LB, Jabara H and Geha RS (1998) Molecular mechanisms of immunoglobulin E regulation. Int Arch Allergy Immunol 115: 257-269.
Baeuerle PA and Henkel T (1994). Function and activation of NF-Kappa B in the immune system. Annu Rev Immunol 12: 141-179.
Baggiolini M, Dewald B, and Moser B (1997). Human chemokines: an update. Annu Rev Immunol 15: 675—705.
Bankova V, Boudourova KG, Popov S, Sforcin JM and Funari SRC (1995). Seasonal variations of the chemical composition of brazilian propolis. Apidologie 29: 361-367.
Banskota AH, Tezuka Y, and Kadota S (2001). Recent progress in pharmacological research of propolis. Phytother Res 15:561-571.
Banskota AH, Tezuka Y, Prasain JK, Matsushige K, Saiki I, and Kadota S (1998). Chemical constituents of Brazilian propolis and their cytotoxic activities. J Nat Prod 61: 896-900.
Barnes PJ and Adcock IM (1998). Transcription factors and asthma. Eur Respir J 12: 221-234.
Barnes PJ, Grunstein MM, Leff AR and Woolcock AJ (1997). Asthma Lippincott-Raven Publishers, Philadephia.
Bielory L and Lupolik (1999). Herbal interventions in asthma and allergy. J Asthma 63: 1-65.
Borish L, and Rosenwasser L (1997). TH1/TH2 lymphocytes: doubt some more. J Allergy Clin Immunol 99: 161-164.
Borrelli F, Maffia P, Ianaro A, Russo A, Capasso F and Ialenti A (2002). Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia 73 Suppl 1: S53-S63.
Bradley J and Xu X (1996). Diet, age, and the immune system. Nutrition Rev 54: S43-S50.
Brewer JP, Kisselgof AB and Martin TR (1999). Genetic variability in pulmonary physiologic, cellular, and antibody responses to antigen in mice. Am J Respir Crit Care Med 160: 1150-1156.
Burdock GA (1998). Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347-363.
Busse WW and Lemanske RF (2001). Asthma. N Engl J Med 344: 350-362.
Busse WW and Rosenwasser LJ (2003). Mechanisms of asthma. J Allergy Clin Immunol 111: s799-804.
Chen YJ, Shiao MS and Wang SY (2001). The antioxidant caffeic phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells. Anticancer Drugs 12: 143-149.
Chung KF, and Barnes PJ (1999). Cytokines in asthma. Thorax 54: 825-857.
Chuang YH, Chiang BL, Chou CC and Hsieh KH (1997). Immune effector cells induced by complete Freund’s Adjvant exert inhibitory effect on antigen-specific type 2 T helper response. Clin Exp Allergy 27: 315-324.
Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, and Williams TJ (1995). Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182: 1169-1174.
Fensen MR, Pommier Y, Leteurtre F, Hirogushi S, Yung J, and Kohn KW (1994). Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol 48: 595-608.
Fitzpatrick LR, Wang J and Le T (2001). Caffeic acid phenethyl ester, an inhibitor of nuclear factor-B, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. J Pharmacol Exp Ther 299: 915-920.
Gemou-Engesaeth V, Fagerhol MK, Toda M, Hamid Q, Halvorsen S, Groegaard JB and Corrigan CJ (2002). Expression of activation markers and cytokine mRNA by peripheral blood CD4 and CD8 T cells in atopic and nonatopic childhood asthma: effect of inhaled glucocorticoid therapy. Pediatrics 109: E24.
Ghisalberti EL (1979). Propolis: a review. Bee World 60: 59-84.
Gierse JK, Hauser SD, Creely DP, Koboldt C, Rangwala SH, Isakson PC and Seibert K (1995). Expression and selective inhibition of the constitutive and inducible forms of human cyclo-oxygenase. Biochem J 305: 479-484.
Grun JL and Maurer PH (1989). Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell Immunol 121: 134-145.
Grunberger D, Banerjee R, Eisinger K, Oltx EM, Efros L, Cadwell M, Estevez V, and Nakanishi K (1988). Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44: 230-232.
Han S, Sung KH, Yim D, Lee S, Cho K, Lee CK, Ha NJ and Kim K (2002). Activation of murine macrophage cell line RAW 264.7 by Korean propolis. Arch Pharm Res 25: 895-902.
Hansen G, Berry G, Dekruyff RH, and Umetsu DT (1999). Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 103: 175-183.
Harish Z, Rubinstein A, Golodner M, Elmaliah M and Mizrachi Y (1997). Suppression of HIV-1 replication by propolis and its immunoregulatory effect. Drugs Exp Clin Res 23: 89-96.
Herz U, Braun A, Ruckert R and Renz H (1998). Various immunological phenotypes are associated with increased airway responsiveness. Clin Exp Allergy 28: 625-634.
Holtzman MJ, Sampath D, Castro M, Look DC, and Jayaraman S (1996). The one-two of T helper cells: does interferon- knock out the Th2 hypothesis for asthma? Am J Respir Cell Mol Biol 14: 316-318.
Huleihel M and Ishano V (2001). Effect of propolis extract on malignant cell transformation by moloney murine srcoma virus. Arch Virol 146: 1517-1526.
Jaiswal AK, Venugopal R, Mucha J, Carothers AM, and Grunberger D (1997). Caffeic acid phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD(P)H: quinone oxidoreductase (NQO1) gene. Cancer Res 57: 440-446.
Jones DA, Carlton DP, Mclntyre TM, Zimmerman GA and Prescott SM (1993). Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem 268: 9049-9054.
Kennedy B, Chan CC, Culp S and Cromlish W (1993). Cloning and expression of rat prostaglandin endoperoxide synthase cyclooxygenase-2 cDNA. Biochem Biophys Res Commun 197: 494-500.
Khayyal MT, El-Ghazaly MA, El-Khatib AS, Hatem AM, Vries PJF, El-Shafei S and Khattab MM (2003). A clinical pharmacological study of the potential beneficial effects of a propolis food product an adjuvant in asthmatic patients. Fundam Clin Pharmacol 17: 93-102.
Kurashima K, Fujimura M, Myou S, Kasahara K, Tachibana H, Amemiya N, Ishiura Y, Onai N, Matsushima K, and Nakao S (2001). Effects of oral steroids on blood CXCR3+ and CCR4+ T cells in patients with bronchial asthma. Am J Respir Crit Care Med 164: 754-758.
Lee YJ, Liao PH, Chen WK and Yang CC (2000). Preferential cytotoxicity of caffeic acid phenethyl ester analogues on oral cancer cells. Cancer Lett 153: 51-56.
Leong KP and Huston DP (2001). Understanding the pathogenesis of allergic asthma using mouse models. Ann Allergy Asthma Immunol 87: 96-110.
Leung DYM, Jain N, and Leo HL (2003). New concepts in the pathogenesis of atopic dermatitis. Curr Opin Immunol 15: 634-638.
Lloyd CM, Gonzalo JA, Coyle AJ and Gutierrez-Ramos JC (2001). Mouse models of allergic airway disease. Adv Immunol 77: 263-295.
Mahmoud N, Carothers AM, Grunberger D, Bilinski TR, Churchill RM, and Martucci C (2000). Plant phenolic decrease intestinal tumors in an animal model familial adenomatous polyposis. Carcinogenesis 21: 921-927.
Marcucci MC (1995). Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 26: 83-99.
Marin ML, Lee JH, Murtha J, Ustunol Z and Pestka JJ (1997). Differential cytokine production in clonal macrophage and T-cell lines cultured with Bifidobacteria. J Dairy Sci 80: 2713-20.
Márquez N, Sancho R, Macho A, Calzado MA, Fiebich BL and Muñoz E (2004). Caffeic acid phenethyl ester inhibits T-cell activation by targeting both NFAT and NF-B transcription factors. J Pharmacol Exp Ther 308:993-1001.
Masferrer JL, Zweifel B, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC and Seibert K (1994). Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc Natl Acad Sci USA 91:3228-3232.
Menzies-Gow A and Robinson DS (2001). Eosinophil chemokines and chemokine receptors: Their role in eosinophil accumulation and activation in asthma and potential as therapeutic target. J Asthma 38: 605-613.
Merino N, Gonzalez R, Gonzalez A and Remirez D (1996). Histopathological evaluation on the effect of red propolis on liver damage induced by CCl4 in rats. Arch Med Res 27: 285-289.
Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Koboldt C, Mestre JR, Grunberger D, Sacks PG, Tanabe T and Dannenberg AJ (1999). Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model. Cancer Res 59: 2347-2352.
Mirzoeva OK and Calder PC (1996). The effect of propolis and its components on eicosanoid production during the inflammatory response. Prostaglandins Leukot Essent Fatty Acids 55: 441-449.
Mirzoeva OK, Sud''ina GF, Pushkareva MA, Korshunova GA, Sumbatian NV and Varfolomeev SD (1995). Lipophilic derivatives of caffeic acid as lipoxygenase inhibitors with antioxidant properties. Bioorg Khim 21: 143-151.
Mosmann TR and Coffman RL (1989). Th1 and Th2 cells: different pattern of lymphokine secretion lead to different function properties. Ann Rev Immunol 7: 145-173.
Nagaoka T, Banskota AH, Tezuka Y, Saiki I, and Kadota S (2002). Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg Med Chem 10: 3351-3359.
Natarajan K, Singh S, Burke TR, Grunberger D and Aggarwal BB (1996). Caffeic acid phenethyl ester is a potent and spcific inhibitor of activation of nuclear transcription factor NF-B. Proc Natl Aacad Sci USA 93: 9090-9095.
Ohta K and Yamashita N (1999). Apoptosis of eosinophils and lymphocytes in allergic inflammation. J Allergy Clin Immunol 104: 14-21.
Orban Z, Mitsiades N, Burke TR, Tsokos M and Chrousos GP (2000). Caffeic acid phenethyl ester induces leukocyte apoptosis, modulates nuclear factor-Kappa B and suppresses acute inflammation. Neuroimmunomodulation 7: 99-105.
Palframan RT, Collins PD, Williams TJ, and Rankin SM (1998). Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood 91: 2240-2248.
Parham P (2000). The immune system. Garland Publishing, Elsevier Science Ltd.
Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA, Chung SJ, Paik SY, and Oh HY (2004). Immunomodulatory effect of caffeic acid phenethyl ester in balb/c mice. Int Immunopharmacol 4: 429-436.
Peng HJ, Chang ZN, Tsai LC, Su SN, Sshen HD and Chang CH (1998). Heat denaturation of egg-white proteins abrogates the induction of oral tolerance of specific Th2 immune response in mice. Scand J Immunol 48: 491-196.
Preacott SL, Macaubas C, Holt BJ, Smallacombe TB, Loh R, Sly PD and Holt PG (1998). Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol 160: 4730-4737.
Rankin SM, Conroy DM, and Williams TJ (2000). Eotaxin and eosinophil recruitment: implication for human disease. Mol Med Today 6: 20-27.
Resnick MB and Weller PF (1993). Mechanisms of eosinophil recruitment. Am J Respir Cell Mol Biol 8: 349-355.
Robinson D, Hamid Q, Ying S, Bentley A, Assoufi B, Durham S, and Kay AB (1993). Prednisolone treatment in asthma is associated with modulation of bronchoalveolar lavage cell interleukin-4, interleukin-5, and interferon-gamma cytokine gene expression. Am Rev Respir Dis 148: 401-406..
Roitt I, Brostoff J and Male D (1998). Immunology, 5/e. Mosby Publishing, Mosby International Ltd.
Roitt I, Brostoff J and Male D (2001). Immunology, sixth edition. Mosby Publishing, Mosby International Ltd.
Russo A, Longo R and Vanella A (2002). Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia 73 Suppl 1: S21-S29.
Sforcin JM, Fernandes A, Lopes CAM, Bankova V and Funari SRC (2000). Seasonal effect on Brazilian propolis antibacterial activity. J Ethnopharmacol 73: 243-249.
Siebenlist U, Franzo G and Brown K (1994). Structure, regulation, and function of NF-{Kappa}B. Annu Rev Cell Biol 10: 405-455.
Tang ML, Kemp AS, Thorburn J and Hill DJ (1994). Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet 344: 983-985.
Tomas-Barbran FA, Cristina-Vignera C, Vit-Olivier P, Ferreres F and Tomas-Lorente F (1993). Phytochemical evidence for the botanical origin of tropical propolis form Venezuela. Phytochemistry 34: 191-196.
Tomkinson A, Clieslewicz G, Duez C, Larson KA Lee JJ and Gelfand EW (2001). Temporal association between airway hyperresponsiveness and airway eosinophilia in ovalbumin-sensitized mice. Am J Respir Crit Care Med 163: 721-730.
Watabe M, Hishikawa K, Takayanagi A, Shimizu N, and Nakaki T (2004). Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells.
Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL and Donaldson DD (1998). Interleukin-13: central mediator of allergic asthma. Science 282: 2258-2261.
Wilson JW, Djukanovic R, Howarth PH, and Holgate ST (1992). Lymphocyte activation in bronchoalveolar lavage and peripheral blood in atopic asthma. Am Rev Respir Dis 145: 958-960.
Woolcock AJ and Peat JK (1997). Evidence for the increase in asthma worldwide. Ciba Found Symp 206: 122-134.
Ziment I and Tashkin DP (2000). Alternative medicine for allergy and asthma. J Allergy Clin Immunol 106: 603-614.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top