跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林介玟
研究生(外文):Chieh-Wen
論文名稱:斑馬魚mbnl3之鑑定與功能性分析
論文名稱(外文):Identification and functional analysis of zebrafish mbnl3
指導教授:潘惠錦
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:110
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Muscleblind-like (MBNL)是一群參與調控特定組織所需差異性剪輯的蛋白家族。在果蠅中,muscleblind蛋白參與了肌肉及感光受器的末端分化調控。在人類及小鼠中都具有3種MBNL的paralogs。先前我們實驗室已在斑馬魚選殖出其3種mbnl基因(zmbnl1-3)以研究其在斑馬魚早期發育所扮演的角色。在本篇論文主要集中於zmbnl3的相關研究。藉由pre-mRNA的差異性剪輯,zmbnl3至少可轉譯出5種不同的蛋白質異構物。zmbnl3除了含有MBNL典型的CCCH zinc finger domains,也含有其他特殊的保留區域(如LEV box, NGR box, Ser/Thr-rich domain)。zmbnl3廣泛表現於成魚組織,但不同的isoforms在各組織的表現量不盡相同。在胚胎發育時期,zmbnl3在24hpf之後才漸漸出現。利用全胚體原位雜交技術觀察(WISH)到zmbnl3在胚胎中呈現廣泛性表現。利用antisense morpholino knockdown zmbnl3,並以不同marker gene(wnt1, tnnt2, anxa5)進行WISH,及分析其可能的下游基因clc-1 and tnnt2,並沒有觀察到與WT明顯的差異。但藉由alcian blue staining發現 zmbnl3 morphants其咽喉鰓弓的軟骨發育有異常的情況,且在48hpf之後,myoD表現量較WT下降。另一方面,顯微注射zmbnl3 cRNA發現其異常表型主要為體軸彎曲及體節縮短。隨著施打劑量增加,亦發現畸形率有dose-dependent的情況。利用頭部及肌肉發育相關marker(wnt1, pax2.1, myoD, myogenin)進行WISH,發現過量表達zmbnl3的胚胎腦部發育受到影響且體節排列嚴重異常。但以RT-PCR分析其可能下游基因(clc-1, myoD, myogenin,)並沒有發現改變。將zmbnl3過量表達於C2C12細胞,可發現zmbnl3會抑制肌肉細胞的分化(如:缺乏融合的多核肌纖維細胞、mef2a 剪輯形式停留在分化前及MHC蛋白表現量下降)。由Dual-luciferase reporter assaye更發現了在斑馬魚胚胎中,zmbnl3可以降低myoD promoter的活性。综合以上結果,我們推測zmbnl3藉由MyoD-dependent途徑來干擾肌肉細胞進行分化。

Muscleblind-like (MBNL) is a family of proteins that participate in regulation of tissue-specific alternative splicing. In Drosophila, the muscleblind protein was shown to regulate terminal differentiation of photoreceptors and muscles. Three MBNL paralogs have been identified in humans and mice. Previously, we cloned three mbnl genes (zmbnl1 – 3) in zebrafish in order to study their function during fish development. In this study, we focus on zmbnl3. Alternative splicing of the zmbnl3 primary transcripts gives rise to at least 5 protein isoforms. In addition to the characteristic CCCH zinc finger domains, several structural motifs (like LEV box, NGR box, Ser/Thr-rich domain) are also found conserved in zmbnl3. Zmbnl3 is expressed in most adult tissues although the expression of specific spliceforms varies. During embryogenesis, zmbnl3 transcripts are hardly detected until 24hpf. Whole-mount in situ hybridization (WISH) reveals that zmbnl3 expression in the embryo is more ubiquitous rather than specific. zmbnl3 morphants of antisense morpholono knockdown were examined by WISH analysis of several marker genes (wnt1, tnnt2, anxa5), as well as by RT-PCR analysis of the splicing patterns of its suspected targets, clc-1 and tnnt2. The morphants did not show clear difference from WT embryos. However, alcian blue staining revealed overt defects in the pharyngeal arches of zmbnl3 morphants, and myoD expression was also decreased. On the other hand, microinjection of zmbnl3 cRNA into the embryos resulted in defective embryos with crooked body axes and short somites. The defective rate of the injected embryos increased in a dose-dependent manner. WISH analysis of several marker genes (wnt1, pax2.1, myoD, myogenin) revealed that embryos overexpressed with zmbnl3 had disorganized somite formation and abnormal brain development. RT-PCR analysis indicated that the splicing patterns of clc-1 and expression levels of myoD and myogenin were not changed. When introduced into C2C12 cells, zmbnl3 inhibited cell differentiation as judged by lack of cell fusion, change of mef2a splicing pattern and reduction of MHC expression. Dual-luciferase reporter assay further revealed that zmbnl3 down-regulated myoD promoter activity in fish embryos. These data suggest that zmbnl3 may interfere with muscle differentiation through the MyoD-dependent pathway.

目錄
中文摘要-------------------------------------------- p.01
英文摘要-------------------------------------------- p.03
序論
Muscleblind protein 基本結構---------------------- p.6
Muscleblind之基因表現及蛋白質功能--------------- p.9
Muscleblind與末端肌肉細胞分化 ------------------ p.12
Muscleblind與疾病 ------------------------------ p.15
動機 ----------------------------------------------- p.17
材料與方法
斑馬魚的飼育與胚胎操作 -------------------------- p.18
1.斑馬魚(Danio rerio的飼養) -------------------- p.18
2.胚胎取得與保存 ----------------------------- p.19
斑馬魚zmbnl3基因之選殖及建構 -------------------- p.20
1.生物資訊序列比對 --------------------------- p.20
2. RACE-PCR --------------------------------- p.21
3. Total RNA萃取 ----------------------------- p.23
4. RT-PCR ------------------------------------ p.24
5.不同物種同源性胺基酸序列比對 --------------- p.25
全胚體原位雜交技術 ---------------------------- p.25
顯微注射 -------------------------------------- p.31
1.morpholino注射 --------------------------- p.31
2.cRNA注射 ------------------------------- p.32
全胚體軟骨染色 -------------------------------- p.34
抗體製備 -------------------------------------- p.35
1.構築重組pET-29b(+)-zmbnl3C基因表現質體 ---- p.35
2. 6xHis-tagged zmbnl3C重組蛋白的表現與純化 --- p.36
3. 6xHis-tagged zmbnl3C重組蛋白之免疫注射 ----- p.39
細胞的培養 -------------------------------------- p.40
微脂粒之基因轉染 -------------------------------- p.41
蛋白質的表現 ------------------------------------ p.42
1.total protein萃取 ---------------------------- p.42
2.蛋白質之定量 ------------------------------ p.43
3.SDS-PAGE --------------------------------- p.44
4.西方點墨分析 ------------------------------ p.45
Dual-Luciferase Reporter Assay --------------------- p.47
結果
一、zmbnl3之選殖和序列分析 ---------------------- p.50
二、zmbnl3基因的表現 --------------------------- p.51
三、顯微注射antisense morpholino, zmbnl3 knock down 後的表
型觀察 -------------------------------------- p.52
四、zmbnl3沒有直接參與Clc-1及Tnnt2的splicing調節- p.53
五、zmbnl3 knock down的胚胎在midbrain hindbrain boundary、
心臟和魚鰾並無發現發育上的異常---------------- p.54
六、zmbnl3 knock down的胚胎有頭部咽喉鰓弓(pharyngeal arch)
之軟骨構造發育上的異常 ---------------------- p.55
七、zmbnl3 knock down對 myoD表現量的影響 ------- p.55
八、zmbnl3過量表達後之表型觀察 ------------------ p.56
九、過量表達zmbnl3對於肌肉發育的相關marker及Clc-1 splicing
的影響 ---------------------------------------- p.57
十、過量表達zmbnl3造成胚胎體節不正常排列 ------- p.58
十一、過量表達zmbnl3造成胚胎腦部發育上的異常 --- p.59
十二、zmbnl3會抑制C2C12細胞分化 --------------- p.59
十三、zmbnl3能抑制myoD promoter的表現 ---------- p.61
十四、zmbnl3的抗體製備 -------------------------- p.62
討論
一、zmbnl3基因序列及特殊功能區在脊椎動物中具有高度保
留性 ---------------------------------------- p.64
二、zmbnl3基因與脊椎動物發育時期表現之差異性 ---- p.65
三、zmbnl3 loss/gain of function之討論 --------------- p.67
四、zmbnl3與myoD promoter之關係 ---------------- p.70
圖表 ------------------------------------------------ p.72
參考文獻 -------------------------------------------- p.93
附圖 ------------------------------------------------ p.98
附表 ------------------------------------------------ p.108
圖與表次
圖一.經選殖、定序及BLAST分析,建構 zmbnl3的基因結構- p.72
圖二.將zmbnl1和zmbnl2, zmbnl3和其他物種muscleblind家族的分
子演化樹(phylogenetic tree)關係圖。----------------- p.73
圖三.將zmbnl3和其他物種mbnl3家族胺基酸序列比對圖。-- p.74
圖四.利用RT-PCR分析zmbnl3在成魚組織的分布情況及胚胎時期的
表現。----------------------------------------- p.75
圖五.利用全胚體原位雜交技術(whole-mount in situ hybridization)觀
察zmbnl3在胚胎發育時間和空間上的表現。---------- p.76
圖六.zmbnl3 morphants於24 hpf至120 hpf時期的表型。---- p.77
圖七.利用RT-PCR分析zmbnl3 knockdown之後並沒有對clc-1及tnnt2
的splicing剪輯上的產生異常。--------------------- p.78
圖八. zmbnl3 knock down morphants在midbrain hindbrain boundary、
心臟和魚膘並無發現明顯發育的異常。-------------- p.79
圖九. zmbnl3 morphants部分有頭部咽喉鰓弓(pharyngeal arch)之軟骨
構造發育上的異常。------------------------------- p.80
圖十.利用RT-PCR分析zmbnl3 knockdown morphants之myoD表現。
----------------------------------- p.81
圖十一.利用RT-PCR分析overexpression zmbnl3B及zmbnl3C之後,
發現對於肌肉發育相關marker(myoD、myogenin)及調控clc-1
的splicing並無明顯影響。----------------------- p.82
圖十二.過量表達zmbnl3造成胚胎發育上體節不正常排列。-- p.83
圖十三.過量表達zmbnl3造成胚胎體節不正常排列。-------- p.84
圖十四.過量表達zmbnl3造成胚胎腦部發育上的異常。------ p.85
圖十五.利用C2C12肌肉纖維母細胞進行pCS2+/ pCS2+-zmbnl3B和
pEGFP-N3 co-transfection實驗觀察zmbnl3B對於C2C12細 胞分化型態的影響。---------------------------- p.86
圖十六.利用RT-PCR及西方點墨法分析zmbnl3B對於C2C12細胞分
化指標基因表現的影響(co-transfection實驗)。------ p.87
圖十七.利用抗生素篩選使C2C12肌肉纖維母細胞大量表達進行
zmbnl3B-pEGFP-N3以觀察zmbnl3B對於C2C12細胞分化型
態的影響。------------------------------------- p.88
圖十八.利用RT-PCR及西方點墨法分析zmbnl3B對於C2C12細胞分
化指標基因表現的影響(enrich實驗)。------------- p.89
圖十九.zmbnl3能抑制myoD promoter的表現。------------ p.90
表一. zmbnl3 knockdown morphants 表型統計表。---------- p.91
表二. zmbnl3 ovexpression morphants 表型統計表。--------- p.92
附圖一.建構zmbnl3基因結構時所使用的TA-cloning質體,pGEM-T
Easy vector (promega)。--------------------------- p.98
附圖二.zmbnl3 cRNA製作時所用之質體pCS2+。----------- p.99
附圖三.蛋白純化所利用之質體pET-29b(+)。-------------- p.100
附圖四.建立最佳誘導帶有pET-29b(+)-zmbnl3C質體之大腸桿菌株
BL21表現zmbnl3C-6xHis重組蛋白質之條件。------- p.101
附圖五-a. zmbnl3C-6xHis重組蛋白純化結果。-------------- p.102
附圖五-b. zmbnl3C-6xHis重組蛋白純化結果。------------- p.103
附圖五-c. 利用西方點墨法檢測所得之蛋白純化結果帶有
zmbnl3C-6xHis之重組蛋白。------------------- p.104
附圖六. 利用西方點墨法檢測兔子血清帶有Anti-zmbnl3C-6xHis之抗
體。------------------------------------------ p.105
附圖七.建構pEGFP-N3-zmbnl3B質體以進行大部分表達(enrich)
zmbnl3B-EGPF蛋白對於C2C12肌肉纖維母細胞分化的影響。
-------------------------- p.106
附圖八.Dual-Luciferase reporter assay實驗所用質體map圖。-- p.107
附表一. RT-PCR所用之primer列表 (zmbnl3)-------------- p.108
附表二.RT-PCR所用之primer列表 (zebrafish)------------ p.109
附表三. RT-PCR所用之primer列表 (mouse – C2C12)------ p.110
附表四.全胚體原位雜交所使用之probe列表 -------------- p.110


Amoyel, M., Cheng, Y.C., Jiang, Y.J., and Wilkinson, D.G. (2005). Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development 132, 775-785.

Artero, R., Prokop, A., Paricio, N., Begemann, G., Pueyo, I., Mlodzik, M., Perez-Alonso, M., and Baylies, M.K. (1998). The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2. Dev Biol 195, 131-143.

Begemann, G., Paricio, N., Artero, R., Kiss, I., Perez-Alonso, M., and Mlodzik, M. (1997). muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 124, 4321-4331.

Blackshear, P.J. (2002). Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 30, 945-952.

Brown, R.S. (2005). Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15, 94-98.

Dee, C.T., Hirst, C.S., Shih, Y.H., Tripathi, V.B., Patient, R.K., and Scotting, P.J. (2008). Sox3 regulates both neural fate and differentiation in the zebrafish ectoderm. Dev Biol 320, 289-301.

DeMaria, C.T., Sun, Y., Long, L., Wagner, B.J., and Brewer, G. (1997). Structural determinants in AUF1 required for high affinity binding to A + U-rich elements. J Biol Chem 272, 27635-27643.

Dodou, E., Xu, S.M., and Black, B.L. (2003). mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech Dev 120, 1021-1032.

Drin, G., Casella, J.F., Gautier, R., Boehmer, T., Schwartz, T.U., and Antonny, B. (2007). A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14, 138-146.

Farber, S.A., De Rose, R.A., Olson, E.S., and Halpern, M.E. (2003). The zebrafish annexin gene family. Genome Res 13, 1082-1096.

Fardaei, M., Rogers, M.T., Thorpe, H.M., Larkin, K., Hamshere, M.G., Harper, P.S., and Brook, J.D. (2002). Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 11, 805-814.

Faustino, N.A., and Cooper, T.A. (2003). Pre-mRNA splicing and human disease. Genes Dev 17, 419-437.

Fernandes, J.M., Kinghorn, J.R., and Johnston, I.A. (2007). Characterization of two paralogous muscleblind-like genes from the tiger pufferfish (Takifugu rubripes). Comp Biochem Physiol B Biochem Mol Biol 146, 180-186.

Fernandes, J.M., Mackenzie, M.G., Elgar, G., Suzuki, Y., Watabe, S., Kinghorn, J.R., and Johnston, I.A. (2005). A genomic approach to reveal novel genes associated with myotube formation in the model teleost, Takifugu rubripes. Physiol Genomics 22, 327-338.

Gomperts, M., Pascall, J.C., and Brown, K.D. (1990). The nucleotide sequence of a cDNA encoding an EGF-inducible gene indicates the existence of a new family of mitogen-induced genes. Oncogene 5, 1081-1083.

Ho, T.H., Charlet, B.N., Poulos, M.G., Singh, G., Swanson, M.S., and Cooper, T.A. (2004). Muscleblind proteins regulate alternative splicing. EMBO J 23, 3103-3112.
Ho, T.H., Savkur, R.S., Poulos, M.G., Mancini, M.A., Swanson, M.S., and Cooper, T.A. (2005). Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 118, 2923-2933.

Hsiao, C.D., Tsai, W.Y., Horng, L.S., and Tsai, H.J. (2003). Molecular structure and developmental expression of three muscle-type troponin T genes in zebrafish. Dev Dyn 227, 266-279.

Ishibashi, J., Perry, R.L., Asakura, A., and Rudnicki, M.A. (2005). MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J Cell Biol 171, 471-482.

Kanadia, R.N., Johnstone, K.A., Mankodi, A., Lungu, C., Thornton, C.A., Esson, D., Timmers, A.M., Hauswirth, W.W., and Swanson, M.S. (2003a). A muscleblind knockout model for myotonic dystrophy. Science 302, 1978-1980.

Kanadia, R.N., Urbinati, C.R., Crusselle, V.J., Luo, D., Lee, Y.J., Harrison, J.K., Oh, S.P., and Swanson, M.S. (2003b). Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. Gene Expr Patterns 3, 459-462.

Kay, B.K., Williamson, M.P., and Sudol, M. (2000). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14, 231-241.

Kino, Y., Mori, D., Oma, Y., Takeshita, Y., Sasagawa, N., and Ishiura, S. (2004). Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Hum Mol Genet 13, 495-507.

Lai, W.S., Carballo, E., Strum, J.R., Kennington, E.A., Phillips, R.S., and Blackshear, P.J. (1999). Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19, 4311-4323.

Lai, W.S., Kennington, E.A., and Blackshear, P.J. (2002). Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 277, 9606-9613.

Lee, K.S., Smith, K., Amieux, P.S., and Wang, E.H. (2008). MBNL3/CHCR prevents myogenic differentiation by inhibiting MyoD-dependent gene transcription. Differentiation 76, 299-309.

Lee, K.S., Squillace, R.M., and Wang, E.H. (2007). Expression pattern of muscleblind-like proteins differs in differentiating myoblasts. Biochem Biophys Res Commun 361, 151-155.

Lukong, K.E., Chang, K.W., Khandjian, E.W., and Richard, S. (2008). RNA-binding proteins in human genetic disease. Trends Genet 24, 416-425.

Miller, J.W., Urbinati, C.R., Teng-Umnuay, P., Stenberg, M.G., Byrne, B.J., Thornton, C.A., and Swanson, M.S. (2000). Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19, 4439-4448.

Monferrer, L., and Artero, R. (2006). An interspecific functional complementation test in Drosophila for introductory genetics laboratory courses. J Hered 97, 67-73.

Pascual, M., Vicente, M., Monferrer, L., and Artero, R. (2006). The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 74, 65-80.

Picker, A., Scholpp, S., Bohli, H., Takeda, H., and Brand, M. (2002). A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines. Development 129, 3227-3239.

Rescan, P.Y. (2001). Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol 130, 1-12.

Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. (2007). p53 activation by knockdown technologies. PLoS Genet 3, e78.

Schilling, T.F., Piotrowski, T., Grandel, H., Brand, M., Heisenberg, C.P., Jiang, Y.J., Beuchle, D., Hammerschmidt, M., Kane, D.A., Mullins, M.C., et al. (1996). Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123, 329-344.

Squillace, R.M., Chenault, D.M., and Wang, E.H. (2002). Inhibition of muscle differentiation by the novel muscleblind-related protein CHCR. Dev Biol 250, 218-230.

Tapscott, S.J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132, 2685-2695.

Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3, 59-69.

Trembley, J.H., Tatsumi, S., Sakashita, E., Loyer, P., Slaughter, C.A., Suzuki, H., Endo, H., Kidd, V.J., and Mayeda, A. (2005). Activation of pre-mRNA splicing by human RNPS1 is regulated by CK2 phosphorylation. Mol Cell Biol 25, 1446-1457.

Wang, G.S., and Cooper, T.A. (2007). Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8, 749-761.

Wang, L.C., Hung, W.T., Pan, H., Chen, K.Y., Wu, Y.C., Liu, Y.F., and Hsiao, K.M. (2008). Growth-dependent effect of muscleblind knockdown on Caenorhabditis elegans. Biochem Biophys Res Commun 366, 705-709.

Worthington, M.T., Amann, B.T., Nathans, D., and Berg, J.M. (1996). Metal binding properties and secondary structure of the zinc-binding domain of Nup475. Proc Natl Acad Sci U S A 93, 13754-13759.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文