|
[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987. [2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, 1987. [3] E. Yablonovitch, “Photonic crystals: semiconductor of light,” Scientific American, vol. 285, no. 6, pp. 47-55, 2001. [4] http://taibnet.sinica.edu.tw/chi/taibnet_species_detail.php?name_code=347116 [5] http://www.hfzqyzc.com/product/1_1.html [6] http://www.harley.com.tw/jewels/new_page_J5.htm [7] Y. Morita, Y. Tsuji, and K. Hirayama,“Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 93-95, Jan. 2008. [8] Robinson S and Nakkeeran R, “Studies on photonic crystal based add drop filter by varying the dimension of inner rods,” Sustainable Energy and Intelligent Systems (SEISCON 2011), International Conference on, pp. 20-22, July 2011. [9] Jiu-Sheng Li, Han Liu, and Le Zhang “Compact and tunable-multichannel terahertz wave filter,” IEEE Transactions on Terahertz Science and Technology (Volume:5 , Issue: 4 ), pp.551-555, July 2015. [10] Azliza J. M. Adnan, R. Mohamad, Imran A. Tengku, and Sahbudin Shaari “1310/1550 nm photonic crystal based on multimode interference demultiplexer,” In the Joint Conference of the Opto-Electronics and Communications Conference, Australian Conference on Optical Fibre Technology (OECC/ACOFT), 7-10 July 2008. [11] 杜俊宏,二維光子晶體之新型1.3/1.55μm分波解多工器的設計,碩士論文,龍華科技大學,電機工程研究所,桃園,2005. [12] P. R. Villeneuve, S. Fan and J.D. Joannopoulos, “Microcavities in photonic crystal: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B, vol. 54, pp. 7837-7842, 1996. [13] C. Kee, J. Kim, H. Y. Park and K. J. Chang, “Defect modes in a two-dimensional square lattice of square rods,” Phys. Rev. E, vol. 58, pp. 7908-7912, 1998. [14] R. D. Meade, A. M. Rappe, K. D. Brommer and J. D. Joannopoulos, “Accurate theoretical analysis of photonic band-gap material,” Phys. Rev. B, vol.48, pp. 8434-8437, 1993. [15] E. Yablonovitch and T. J. Gmitter, “Photonic band structure: the face-centered -cubic case,” Phys. Rev. Lett., vol. 63, pp. 1950-1953, 1989. [16] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 14, pp. 302-307, 1966. [17] D. Felbacq, G. Tayeb and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A, vol. 11, pp. 2526-2538, 1994. [18] G. Tayeb and D. Maystre, “Rigorous theoretical study of finite-size two dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A, vol.14, pp. 3323-3332, 1997. [19] P. P. Silvester and G. Pelosi, Finite elements for wave electromagnetics: methods and techniques, IEEE Press, New York, 1994. [20] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, Princeton, Princeton University Press, 1995. [21] K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett., vol. 65, pp. 2646-2649, 1990. [22] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations,” Phys. Rev. Lett., vol. 65, pp. 2650-2653, 1990. [23] 林振華,電磁場與天線分析-使用時域有限差分法(FDTD),全華圖書,一版,台北,1999。 [24] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagnetic Compatibility, vol. 23, pp. 377-382, 1981. [25] R. L. Higdon, “Absorbing boundary conditions for difference approximation of the multi-dimensional wave equation,” Mathematics of Computation, vol. 47, no. 176, pp.437- 459, 1986. [26] Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Scientia Sinica A, vol. 27, no. 10, pp. 1063-1076, 1984. [27] J. P Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys, vol. 114, pp. 185-200, 1994. [28] E. L. Lindman, “Free-space boundary conditions for the time dependent wave equation,” J. Comput. Phys., vol.18, pp. 66-78, 1975. [29] C. Rappaport and L. Bahrmasel, “An absorbing boundary condition based on anechoic absorber for UEM scattering computation,” Journal of Electromagnetic Waves and Applications, vol. 6, no. 12, pp. 1621-1634, 1992. [30] Z. S. Sackes, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and Propagation, vol. 43, no.12, pp. 1460-1463, 1995. [31] S. D. Gedeney, “An anisotropic perfectly matched layer-absorbing for the truncation of FDTD lattices,” IEEE Trans. Antennas and Propagation, vol. 44, no. 12, pp. 1630-1639, 1996. [32] K. K. Mei and J. Fang, “Superaborption-a method to improve absorbing boundary conditions,” IEEE Trans. Antennas and Propagation, vol. 40, no. 9, pp. 1001-1010, 1992. [33] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite difference time domain method, Artech House, 2000.
|