跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姬瀚珽
研究生(外文):CHI, HAN-TING
論文名稱:銀釩氧化合物暨銀釩氧化合物複合氧化石墨烯光觸媒:合成、特性、光催化活性及降解機構之研究
論文名稱(外文):The photocatalysts of silver vanadium oxide and silver vanadium oxide/graphene oxide composites: Synthesis, characterization, photocatalytic activity and mechanisms
指導教授:陳錦章陳錦章引用關係
指導教授(外文):Chen, Chiing-Chang
口試委員:盧長興張嘉麟
口試委員(外文):Lu, Chung-ShinChang, Jia-Lin
口試日期:2017-01-10
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:177
中文關鍵詞:可見光觸媒高壓水熱法銀釩氧化合物氧化石墨烯草脫淨結晶紫染料
外文關鍵詞:Photocatalysthydrothermal methodssilver vanadium oxidegraphene oxide(GO)AtrazineCrystal violet
相關次數:
  • 被引用被引用:1
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
此研究係利用高壓水熱法(hydrothermal methods)來合成銀釩氧化合物以及銀釩氧化合物複合氧化石墨烯(graphene oxide, GO),並以可見光作為光源,降解草脫淨(Atrazine)及結晶紫染料(Crystal Violet ,CV) 。本實驗首先以硝酸銀、偏釩酸銨及氧化石墨烯為起始物,分別溶解在去離子水 ( DI water )中攪拌並混合,並利用氨水(NH4OH)調整pH值,之後將該水溶液裝入至23毫升高壓釜並放置烘箱中加熱。最終得到的觸媒樣品以X射線粉末繞射儀(XRD)、場發掃描式電子顯微鏡及能量分散譜儀(FE-SEM-EDS)、場發穿透式電子顯微鏡(FE-TEM)、傅立葉轉換紅外線光譜儀(FT-IR) 、紫外光-可見光漫反射光譜儀(DRS)、比表面積分析儀(BET) 、X射線光電子能譜儀(XPS)等儀器分析鑑定材料的特性。最後,利用不同條件之光觸媒降解Atrazine和CV,並探討銀釩氧化合物及銀釩氧化合物複合GO對於光催化效率的影響。研究結果發現,AgxVyOz之最佳參數條件,不論是用於降解草脫淨或結晶紫染料皆具有良好之效果。並且,複合GO後,不只縮短其降解時間,另一面也提高了光觸媒之穩定性及回收效率。
In this study, a series of the silver vanadium oxide and silver vanadium oxide composite graphene oxide (GO) are prepared using hydrothermal methods, and using the visible light as the light source of degradation of Atrazine and CV. In the experiment, first, AgNO3 、NH4VO3 and commercial GO are used as the starting material, then seperately dissolved in DI water, stirring and mixing, and using NH4OH to adjust the pH value. Then the aqueous solution is placed in a 23ml autoclave and put into an oven, and heated. The ultimate products of photocatalyst are characterized by XRD, FE-SEM-EDS, FE-TEM, FT-IR, DRS, BET, and HR-XPS. Last, using different conditions of photocatalyst to conduct the process of degradation of Atrazine and CV, investigating silver vanadium oxide and silver vanadium oxide/GO for photocatalytic efficiency. In the study, we collect that the best parameter condition of AgxVyOz is effective in the degradation of both Atrazine and Crystal Violet. Moreover, the composite of AgxVyOz and GO not only shortens the duration of degradation, but also increases the stability and the quantity of recycling of photocatalyst.
摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
圖目錄 VI
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 光觸媒(Photocatalyst) 5
2.2銀釩氧化合物 6
2.3氧化石墨烯(Graphene oxide) 10
2.4草脫淨(Atrazine) 12
2.5結晶紫染料(Crystal Violet) 15
第三章 實驗材料與方法 16
3.1實驗架構 16
3.2 實驗材料 17
3.2.1觸媒合成之材料及儀器藥品 17
3.2.2草脫淨 18
3.2.3結晶紫染料 18
3.3 實驗合成 19
3.3.1銀釩氧化合物的合成(以Ag:V=3:1為例) 19
3.3.2銀釩氧化合物複合GO的合成(以Ag:V=3:1為例) 20
3.4 實驗合成樣品總表 21
3.5樣品材料鑑定及特性分析 23
3.6光催化降解測試 24
3.7實驗儀器設備 26
3.7.1儀器廠牌規格 26
3.7.2儀器條件 27
第四章 結果與討論 29
4.1 AgxVyOz之表面特性分析 29
4.1.1改變AgxVyOz之銀釩莫耳比 30
4.1.1.1 X射線繞射分析儀 30
4.1.1.2 場發式掃描電子顯微鏡(FE-SEM-EDS) 35
4.1.1.3 紫外光/可見光漫反射光譜儀(DRS) 41
4.1.1.4 傅立葉轉換紅外光譜儀(FT-IR) 46
4.1.1.5 X射線光電子能譜儀(XPS) 47
4.1.1.6 場發式穿透電子顯微鏡(TEM) 50
4.1.1.7 比表面積及孔徑測定儀(BET) 52
4.1.1.8 光降解效率分析─透過高效液相層析儀(HPLC) 55
4.1.1.9 光降解效率分析─透過紫外光可見光分光光譜儀 58
4.1.1.10 活性物種測試-草脫淨 61
4.1.1.11 活性物種測試-結晶紫染料 62
4.1.2改變AgxVyOz之合成溫度 63
4.1.2.1 X射線繞射分析儀 63
4.1.2.2 場發式掃描電子顯微鏡(FE-SEM-EDS) 67
4.1.2.3 紫外光/可見光漫反射光譜儀(DRS) 72
4.1.2.4 光降解效率分析─透過高效液相層析儀(HPLC) 77
4.1.2.5 光降解效率分析─透過紫外光可見光分光光譜儀 82
4.1.2.6 光觸媒之穩定性與回收率-草脫淨 89
4.1.2.7 光觸媒之穩定性與回收率-結晶紫染料 91
4.1.3AgxVyOz結論 93
4.2 AgxVyOz/GO之表面特性分析 94
4.2.1改變AgxVyOz/GO之合成溫度 95
4.2.1.1 X射線繞射分析儀 95
4.2.1.2 場發式掃描電子顯微鏡(FE-SEM-EDS) 97
4.2.1.3 紫外光/可見光漫反射光譜儀(DRS) 100
4.2.1.4 傅立葉轉換紅外光譜儀(FT-IR) 102
4.2.2改變AgxVyOz/GO之合成時間 103
4.2.2.1 X射線繞射分析儀 103
4.2.2.2 場發式掃描電子顯微鏡(FE-SEM-EDS) 106
4.2.2.3 紫外光/可見光漫反射光譜儀(DRS) 109
4.2.2.4 光降解效率分析─透過高效液相層析儀(HPLC) 111
4.2.2.5 光降解效率分析─透過紫外光可見光分光光譜儀 113
4.2.3改變AgxVyOz/GO之複合GO的量 116
4.2.3.1 X射線繞射分析儀 116
4.2.3.2 場發式掃描電子顯微鏡(FE-SEM-EDS) 118
4.2.3.3 紫外光/可見光漫反射光譜儀(DRS) 121
4.2.3.4 場發式穿透電子顯微鏡(TEM) 124
4.2.3.5 比表面積及孔徑測定儀(BET) 126
4.2.3.6 光降解效率分析─透過高效液相層析儀(HPLC) 129
4.2.3.7 活性物種測試-草脫淨 134
4.2.3.8 光觸媒之穩定性與回收率-草脫淨 135
4.2.3.9 光降解效率分析─透過紫外光可見光分光光譜儀 137
4.2.3.10 活性物種測試-結晶紫染料 140
4.2.3.11 光觸媒之穩定性與回收率-結晶紫染料 141
4.2.3.12 草脫淨之中間產物分析 144
4.2.3.13 近年來光催化降解草脫淨效果之文獻比較 147
4.2.4AgxVyOz/GO結論 148
第五章 結論與建議 149
5.1 結論 149
5.2 未來方向與建議 151
參考文獻 152

【1】V. G. G. K.R. Reddy, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis, Materials Research Express 1 (2014) 12-15.
【2】Q. Chen; P. Yu; W. Huang; S. Yu; M. Liu; C. Gao, High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal, Journal of Membrane Science 492 (2015) 312-321.
【3】Z. Li; M. Ye; A. Han; H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer, Journal of Materials Science: Materials in Electronics 27 (2016) 1031-1043.
【4】Y. P. Z. A.M. Showkat, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.P. Lee, Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica, Bulletin of the Korean Chemical Society 28 (2007) 1985-1992.
【5】N. Gray, Drinking Water Quality. Problems and Solutions, John Wiley& Sons, (1994) 132-148.
【6】A. Mills; S. Le Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 108(1997) 1-35.
【7】X. H. Han Shitonga, Shi Ruixuea, Fu Xianzhi, Wang Xuxub, Prospect and Progress in the Semiconductor Photocatalysis, Chinese Journal of Chmaical Physics 16 (2003) 339-349.
【8】T. Gessner; U. Mayer, Triarylmethane and Diarylmethane Dyes, In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2000.
【9】J. Y. Zhigang Zou, Kazuhiro Sayama, Hironori Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625-627.
【10】Y. Liu; X. Gan; B. Zhou; B. Xiong; J. Li; C. Dong; J. Bai; W. Cai, Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode, Journal of Hazardous Materials 171 (2009) 678-683.
【11】S. Sakthivel; B. Neppolian; M. V. Shankar; B. Arabindoo; M. Palanichamy; V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells 77 (2003) 65-82.
【12】D. Chatterjee; S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 6 (2005) 186-205.
【13】M. Stylidi; D. I. Kondarides; X. E. Verykios, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Applied Catalysis B: Environmental 47 (2004) 189-201.
【14】Z. Z. G. C. Y. F. Y. J.H., Visible Light Responding Photocatalyst of Alkali Metal and Ag-Bi Oxide, CN1526475-A.(2004).
【15】H.-F. Lai; C.-C. Chen; Y.-K. Chang; C.-S. Lu; R.-J. Wu, Efficient photocatalytic degradation of thiobencarb over BiVO4 driven by visible light: Parameter and reaction pathway investigations, Separation and Purification Technology 122 (2014) 78-86.
【16】 楊謹聰,矽酸鉍暨矽酸鉍複合石墨化氮化碳光觸媒:合成、特性、活性與其光催化降解有機汙染物之研究,台中教育大學科學教育研究所碩士論文。 (2015).
【17】蕭巧微,氯溴碘氧化鉍及其複合氧化石墨烯:合成、 特性、光催化活性及降解機構之研究,台中教育大學科學教育研究所碩士論文。(2016).
【18】H. K. Hideki Kato , Akihiko Kudo Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M:  Ta and Nb) with the Perovskite Structure, The Journal of Physical Chemistry B 106 (2002) 12441–12447.
【19】Z. Z. Junwang Tang , Jinhua Ye, Photophysical and Photocatalytic Properties of AgInW2O8, The Journal of Physical Chemistry B 107 (2003) 14265-14269.
【20】Y.-R. Jiang; H.-P. Lin; W.-H. Chung; Y.-M. Dai; W.-Y. Lin; C.-C. Chen, Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet, Journal of Hazardous Materials 283 (2015) 787-805.
【21】L. T. D. Hiroyuki Fukushima Graphite Nanoplatelets as Reinforcements for Polymers: Structural and Electrical Properties, Division of Polymer Chemistry American Chemical Society 42 (2002) 3-42.
【22】L. T. D. Hiroyuki Fukushima Exfoliated graphite as a nano-reinforcement for polymers, Int SAMPE Symp Ex 42 (2003) 1635.
【23】L. T. D. Hiroyuki Fukushima, A Carbon Nanotube Alternative: Graphite Nanoplatelets as Reinforcements for Polymers, Ann Tech Conf – Soc Plast Eng 4 (2003).
【24】D. A. D. Sasha Stankovich, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen, Rodney S. Ruof Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.
【25】T. A. McMurray; P. S. M. Dunlop; J. A. Byrne, The photocatalytic degradation of atrazine on nanoparticulate TiO2 films, Journal of Photochemistry and Photobiology A: Chemistry 182 (2006) 43-51.
【26】T. Hayes; K. Haston; M. Tsui; A. Hoang; C. Haeffele; A. Vonk, Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence, Environmental Health Perspectives 111 (2003) 568-575.
【27】J. Yin; J. Cai; C. Yin; L. Gao; J. Zhou, Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method, Journal of Environmental Chemical Engineering 4 (2016) 958-964.
【28】J. Zhang; H. Bi; G. He; Y. Zhou; H. Chen, Fabrication of Ag3PO4−PANI−GO composites with high visible light photocatalytic performance and stability, Journal of Environmental Chemical Engineering 2 (2014) 952-957.
【29】吳宗諺,以BiVO4光催化劑降解甲基第三丁基醚之研究,中台科技大學環境與安全衛生工程所碩士論文。 (2015).
【30】M.-H. L. Guan-Ting Pan, Rei-Cheng Juang, Tsair-Wang Chung, Thomas C.-K. Yang, Preparation of Visible-Light-Driven Silver Vanadates by a Microwave-Assisted Hydrothermal Method for the Photodegradation of Volatile Organic Vapors, Industrial& Engineering Chemistry Research 50 (2011) 2807-2814.
【31】T. T. Yang Tian, Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles, Journal of the American Chemistry Society 127 (2005) 7632-7637.
【32】M. F. Koichi Awazu , Carsten Rockstuhl , Junji Tominaga , Hirotaka Murakami , Yoshimichi Ohki , Naoya Yoshida , Toshiya Watanabe, A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide, Journal of the American Chemistry Society 130 (2008) 1676-1680.
【33】H. C. G. S. Kumar, Ab initio study of structural, bonding, and vibrational properties of AGaO2 (A = Ag,Cu) delafossites, Computational and Theoretical Chemistry 977 (2011) 78-85.
【34】M. J. W. Klein, Synthesis and Crystal Structure of Silver Nesosilicate, Ag4SiO4, Journal of inorganic and General Chemistry 634 (2008) 1077 - 1081.
【35】C. J. Friebel, M. Z. Naturforsch., Light Absorption of Silver(I)-oxides, Journal for Nature Research B 39B (1984) 739-743.
【36】C. S. Thomas A. Albrecht, Kenneth R. Poeppelmeier The Ag2O−V2O5 −HF (aq) System and Crystal Structure of α-Ag3VO4, Inorganic Chemistry 46 (2007) 1704-1708.
【37】W. Z. W. J. Ren, M. Shang, S.M. Sun, L. Zhang, J. Chang, Photocatalytic activity of silver vanadate with one-dimensional structure under fluorescent light, Journal of Hazardous Materials 183 (2010) 950-953.
【38】Z. L. Haifeng Shi, Jiahui Kou, Jinhua Ye, Zhigang Zou, Facile Synthesis of Single-Crystalline Ag2V4O11 Nanotube Material as a Novel Visible-Light-Sensitive Photocatalyst, The Journal of Physical Chemistry C 115 (2011) 145-151.
【39】W. Zhao; Y. Guo; Y. Faiz; W.-T. Yuan; C. Sun; S.-M. Wang; Y.-H. Deng; Y. Zhuang; Y. Li; X.-M. Wang; H. He; S.-G. Yang, Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis, Applied Catalysis B: Environmental 163 (2015) 288-297.
【40】W. Zhao; Y. Guo; S. Wang; H. He; C. Sun; S. Yang, A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance, Applied Catalysis B: Environmental 165 (2015) 335-343.
【41】P. Ju; H. Fan; B. Zhang; K. Shang; T. Liu; S. Ai; D. Zhang, Enhanced photocatalytic activity of β-AgVO3 nanowires loaded with Ag nanoparticles under visible light irradiation, Separation and Purification Technology 109 (2013) 107-110.
【42】W. Zhao; J. Li; Z. b. Wei; S. Wang; H. He; C. Sun; S. Yang, Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity, Applied Catalysis B: Environmental 179 (2015) 9-20.
【43】G. Wang; W. Feng; X. Zeng; Z. Wang; C. Feng; D. T. McCarthy; A. Deletic; X. Zhang, Highly recoverable TiO2–GO nanocomposites for stormwater disinfection. Water Research 94 (2016) 363-370.
【44】周尚毅,碘氧化鉍複合氧化石墨烯或石墨相氮化碳之特性分析及其光催化降解有機汙染物之研究,台中教育大學科學教育研究所碩士論文。(2015).
【45】傅靖雅,氟碘氧化鉍及其複合氧化石墨烯光觸媒的合成、特性、活性及降解機制之研究,台中教育大學科學教育研究所碩士論文。 (2016).
【46】X. Zhou; T. Shi; J. Wu; H. Zhou, (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation, Applied Surface Science 287 (2013) 359-368.
【47】S. Dong; Y. Cui; Y. Wang; Y. Li; L. Hu; J. Sun; J. Sun, Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater, Chemical Engineering Journal 249 (2014) 102-110.
【48】林珮楓,以BiVO4光催化劑降解拉草之研究,中台科技大學環境與安全衛生工程所碩士論文。 (2013).
【49】C. A. Pineda Arellano; A. J. González; S. S. Martínez; I. Salgado-Tránsito; C. P. Franco, Enhanced mineralization of atrazine by means of photodegradation processes using solar energy at pilot plant scale, Journal of Photochemistry and Photobiology A: Chemistry 272 (2013) 21-27.
【50】J. A. Santacruz-Chávez; S. Oros-Ruiz; B. Prado; R. Zanella, Photocatalytic degradation of atrazine using TiO2 superficially modified with metallic nanoparticles, Journal of Environmental Chemical Engineering 3 (2015) 3055-3061.
【51】S. Komtchou; A. Dirany; P. Drogui; N. Delegan; M. A. El Khakani; D. Robert; P. Lafrance, Degradation of atrazine in aqueous solution with electrophotocatalytic process using TiO2−x photoanode, Chemosphere 157 (2016) 79-88.
【52】S. H. Chen; A. S. Yien Ting, Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample, International Biodeterioration & Biodegradation 103 (2015) 1-7.
【53】S. H. Chen; A. S. Yien Ting, Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost, Journal of Environmental Management 150 (2015) 274-280.
【54】S. Srivastava; R. Sinha; D. Roy, Toxicological effects of malachite green, Aquatic Toxicology 66(2004) 319-329.
【55】C. Cui; Y. Wang; D. Liang; W. Cui; H. Hu; B. Lu; S. Xu; X. Li; C. Wang; Y. Yang, Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light, Applied Catalysis B: Environmental 158–159 (2014) 150-160.
【56】林麗娟,X光繞射原理及其應用,X光材料分析技術與應用專題。(1994).
【57】Z. Y. Xu Dandan, Meng Ming, Preparation, Characterization and Catalytic Performance of Visible-Light Photocatalyst Ag/AgBr/(BiO)2CO3, Chemical Industry and Engineering 33 (2016) 1-7.
【58】V. Sivakumar; R. Suresh; K. Giribabu; V. Narayanan, AgVO3 nanorods: Synthesis, characterization and visible light photocatalytic activity, Solid State Sciences 39 (2015) 34-39.
【59】A. Singh; D. P. Dutta; A. Ballal; A. K. Tyagi; M. H. Fulekar, Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires, Materials Research Bulletin 51 (2014) 447-454.
【60】T. A. Vu; C. D. Dao; T. T. T. Hoang; P. T. Dang; H. T. K. Tran; K. T. Nguyen; G. H. Le; T. V. Nguyen; G. D. Lee, Synthesis of novel silver vanadates with high photocatalytic and antibacterial activities, Materials Letters 123 (2014) 176-180.
【61】C. Shifu; Z. Wei; L. Wei; Z. Huaye; Y. Xiaoling; C. Yinghao, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, Journal of Hazardous Materials 172 (2009) 1415-1423.
【62】W. Zhao; Y. Guo; Y. Faiz; W.-T. Yuan; C. Sun; S.-M. Wang; Y.-H. Deng; Y. Zhuang; Y. Li; X.-M. Wang; H. He; S.-G. Yang, Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis, Applied Catalysis B: Environmental 163 (2015) 288-297.
【63】A. Qian; K. Zhuo; B. N. Choi; S. J. Lee; J. W. Bae; P. J. Yoo; C.-H. Chung, Capacitance enhancement in supercapacitors by incorporating ultra-long hydrated vanadium-oxide nanobelts into graphene, Journal of Alloys and Compounds 688, Part B (2016) 814-821.
【64】B. Tian; R. Dong; J. Zhang; S. Bao; F. Yang; J. Zhang, Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation, Applied Catalysis B: Environmental 158–159 (2014) 76-84.
【65】X.-D. Zhu; Y.-J. Wang; R.-J. Sun; D.-M. Zhou, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere 92 (2013) 925-932.
【66】Q. F. M. j. Shi, J. S. Cao Preparetion and photocatalytic properities of silver vanadate modified titania under visible light irradiation, China Environmental Science 35 (2015) 3317~3324

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊