【1】V. G. G. K.R. Reddy, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis, Materials Research Express 1 (2014) 12-15.
【2】Q. Chen; P. Yu; W. Huang; S. Yu; M. Liu; C. Gao, High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal, Journal of Membrane Science 492 (2015) 312-321.
【3】Z. Li; M. Ye; A. Han; H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer, Journal of Materials Science: Materials in Electronics 27 (2016) 1031-1043.
【4】Y. P. Z. A.M. Showkat, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.P. Lee, Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica, Bulletin of the Korean Chemical Society 28 (2007) 1985-1992.
【5】N. Gray, Drinking Water Quality. Problems and Solutions, John Wiley& Sons, (1994) 132-148.
【6】A. Mills; S. Le Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 108(1997) 1-35.
【7】X. H. Han Shitonga, Shi Ruixuea, Fu Xianzhi, Wang Xuxub, Prospect and Progress in the Semiconductor Photocatalysis, Chinese Journal of Chmaical Physics 16 (2003) 339-349.
【8】T. Gessner; U. Mayer, Triarylmethane and Diarylmethane Dyes, In Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2000.
【9】J. Y. Zhigang Zou, Kazuhiro Sayama, Hironori Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625-627.
【10】Y. Liu; X. Gan; B. Zhou; B. Xiong; J. Li; C. Dong; J. Bai; W. Cai, Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode, Journal of Hazardous Materials 171 (2009) 678-683.
【11】S. Sakthivel; B. Neppolian; M. V. Shankar; B. Arabindoo; M. Palanichamy; V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells 77 (2003) 65-82.
【12】D. Chatterjee; S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 6 (2005) 186-205.
【13】M. Stylidi; D. I. Kondarides; X. E. Verykios, Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Applied Catalysis B: Environmental 47 (2004) 189-201.
【14】Z. Z. G. C. Y. F. Y. J.H., Visible Light Responding Photocatalyst of Alkali Metal and Ag-Bi Oxide, CN1526475-A.(2004).
【15】H.-F. Lai; C.-C. Chen; Y.-K. Chang; C.-S. Lu; R.-J. Wu, Efficient photocatalytic degradation of thiobencarb over BiVO4 driven by visible light: Parameter and reaction pathway investigations, Separation and Purification Technology 122 (2014) 78-86.
【16】 楊謹聰,矽酸鉍暨矽酸鉍複合石墨化氮化碳光觸媒:合成、特性、活性與其光催化降解有機汙染物之研究,台中教育大學科學教育研究所碩士論文。 (2015).【17】蕭巧微,氯溴碘氧化鉍及其複合氧化石墨烯:合成、 特性、光催化活性及降解機構之研究,台中教育大學科學教育研究所碩士論文。(2016).【18】H. K. Hideki Kato , Akihiko Kudo Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure, The Journal of Physical Chemistry B 106 (2002) 12441–12447.
【19】Z. Z. Junwang Tang , Jinhua Ye, Photophysical and Photocatalytic Properties of AgInW2O8, The Journal of Physical Chemistry B 107 (2003) 14265-14269.
【20】Y.-R. Jiang; H.-P. Lin; W.-H. Chung; Y.-M. Dai; W.-Y. Lin; C.-C. Chen, Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet, Journal of Hazardous Materials 283 (2015) 787-805.
【21】L. T. D. Hiroyuki Fukushima Graphite Nanoplatelets as Reinforcements for Polymers: Structural and Electrical Properties, Division of Polymer Chemistry American Chemical Society 42 (2002) 3-42.
【22】L. T. D. Hiroyuki Fukushima Exfoliated graphite as a nano-reinforcement for polymers, Int SAMPE Symp Ex 42 (2003) 1635.
【23】L. T. D. Hiroyuki Fukushima, A Carbon Nanotube Alternative: Graphite Nanoplatelets as Reinforcements for Polymers, Ann Tech Conf – Soc Plast Eng 4 (2003).
【24】D. A. D. Sasha Stankovich, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen, Rodney S. Ruof Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.
【25】T. A. McMurray; P. S. M. Dunlop; J. A. Byrne, The photocatalytic degradation of atrazine on nanoparticulate TiO2 films, Journal of Photochemistry and Photobiology A: Chemistry 182 (2006) 43-51.
【26】T. Hayes; K. Haston; M. Tsui; A. Hoang; C. Haeffele; A. Vonk, Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence, Environmental Health Perspectives 111 (2003) 568-575.
【27】J. Yin; J. Cai; C. Yin; L. Gao; J. Zhou, Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method, Journal of Environmental Chemical Engineering 4 (2016) 958-964.
【28】J. Zhang; H. Bi; G. He; Y. Zhou; H. Chen, Fabrication of Ag3PO4−PANI−GO composites with high visible light photocatalytic performance and stability, Journal of Environmental Chemical Engineering 2 (2014) 952-957.
【29】吳宗諺,以BiVO4光催化劑降解甲基第三丁基醚之研究,中台科技大學環境與安全衛生工程所碩士論文。 (2015).【30】M.-H. L. Guan-Ting Pan, Rei-Cheng Juang, Tsair-Wang Chung, Thomas C.-K. Yang, Preparation of Visible-Light-Driven Silver Vanadates by a Microwave-Assisted Hydrothermal Method for the Photodegradation of Volatile Organic Vapors, Industrial& Engineering Chemistry Research 50 (2011) 2807-2814.
【31】T. T. Yang Tian, Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles, Journal of the American Chemistry Society 127 (2005) 7632-7637.
【32】M. F. Koichi Awazu , Carsten Rockstuhl , Junji Tominaga , Hirotaka Murakami , Yoshimichi Ohki , Naoya Yoshida , Toshiya Watanabe, A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide, Journal of the American Chemistry Society 130 (2008) 1676-1680.
【33】H. C. G. S. Kumar, Ab initio study of structural, bonding, and vibrational properties of AGaO2 (A = Ag,Cu) delafossites, Computational and Theoretical Chemistry 977 (2011) 78-85.
【34】M. J. W. Klein, Synthesis and Crystal Structure of Silver Nesosilicate, Ag4SiO4, Journal of inorganic and General Chemistry 634 (2008) 1077 - 1081.
【35】C. J. Friebel, M. Z. Naturforsch., Light Absorption of Silver(I)-oxides, Journal for Nature Research B 39B (1984) 739-743.
【36】C. S. Thomas A. Albrecht, Kenneth R. Poeppelmeier The Ag2O−V2O5 −HF (aq) System and Crystal Structure of α-Ag3VO4, Inorganic Chemistry 46 (2007) 1704-1708.
【37】W. Z. W. J. Ren, M. Shang, S.M. Sun, L. Zhang, J. Chang, Photocatalytic activity of silver vanadate with one-dimensional structure under fluorescent light, Journal of Hazardous Materials 183 (2010) 950-953.
【38】Z. L. Haifeng Shi, Jiahui Kou, Jinhua Ye, Zhigang Zou, Facile Synthesis of Single-Crystalline Ag2V4O11 Nanotube Material as a Novel Visible-Light-Sensitive Photocatalyst, The Journal of Physical Chemistry C 115 (2011) 145-151.
【39】W. Zhao; Y. Guo; Y. Faiz; W.-T. Yuan; C. Sun; S.-M. Wang; Y.-H. Deng; Y. Zhuang; Y. Li; X.-M. Wang; H. He; S.-G. Yang, Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis, Applied Catalysis B: Environmental 163 (2015) 288-297.
【40】W. Zhao; Y. Guo; S. Wang; H. He; C. Sun; S. Yang, A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance, Applied Catalysis B: Environmental 165 (2015) 335-343.
【41】P. Ju; H. Fan; B. Zhang; K. Shang; T. Liu; S. Ai; D. Zhang, Enhanced photocatalytic activity of β-AgVO3 nanowires loaded with Ag nanoparticles under visible light irradiation, Separation and Purification Technology 109 (2013) 107-110.
【42】W. Zhao; J. Li; Z. b. Wei; S. Wang; H. He; C. Sun; S. Yang, Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity, Applied Catalysis B: Environmental 179 (2015) 9-20.
【43】G. Wang; W. Feng; X. Zeng; Z. Wang; C. Feng; D. T. McCarthy; A. Deletic; X. Zhang, Highly recoverable TiO2–GO nanocomposites for stormwater disinfection. Water Research 94 (2016) 363-370.
【44】周尚毅,碘氧化鉍複合氧化石墨烯或石墨相氮化碳之特性分析及其光催化降解有機汙染物之研究,台中教育大學科學教育研究所碩士論文。(2015).【45】傅靖雅,氟碘氧化鉍及其複合氧化石墨烯光觸媒的合成、特性、活性及降解機制之研究,台中教育大學科學教育研究所碩士論文。 (2016).【46】X. Zhou; T. Shi; J. Wu; H. Zhou, (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation, Applied Surface Science 287 (2013) 359-368.
【47】S. Dong; Y. Cui; Y. Wang; Y. Li; L. Hu; J. Sun; J. Sun, Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater, Chemical Engineering Journal 249 (2014) 102-110.
【48】林珮楓,以BiVO4光催化劑降解拉草之研究,中台科技大學環境與安全衛生工程所碩士論文。 (2013).【49】C. A. Pineda Arellano; A. J. González; S. S. Martínez; I. Salgado-Tránsito; C. P. Franco, Enhanced mineralization of atrazine by means of photodegradation processes using solar energy at pilot plant scale, Journal of Photochemistry and Photobiology A: Chemistry 272 (2013) 21-27.
【50】J. A. Santacruz-Chávez; S. Oros-Ruiz; B. Prado; R. Zanella, Photocatalytic degradation of atrazine using TiO2 superficially modified with metallic nanoparticles, Journal of Environmental Chemical Engineering 3 (2015) 3055-3061.
【51】S. Komtchou; A. Dirany; P. Drogui; N. Delegan; M. A. El Khakani; D. Robert; P. Lafrance, Degradation of atrazine in aqueous solution with electrophotocatalytic process using TiO2−x photoanode, Chemosphere 157 (2016) 79-88.
【52】S. H. Chen; A. S. Yien Ting, Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample, International Biodeterioration & Biodegradation 103 (2015) 1-7.
【53】S. H. Chen; A. S. Yien Ting, Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost, Journal of Environmental Management 150 (2015) 274-280.
【54】S. Srivastava; R. Sinha; D. Roy, Toxicological effects of malachite green, Aquatic Toxicology 66(2004) 319-329.
【55】C. Cui; Y. Wang; D. Liang; W. Cui; H. Hu; B. Lu; S. Xu; X. Li; C. Wang; Y. Yang, Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light, Applied Catalysis B: Environmental 158–159 (2014) 150-160.
【56】林麗娟,X光繞射原理及其應用,X光材料分析技術與應用專題。(1994).
【57】Z. Y. Xu Dandan, Meng Ming, Preparation, Characterization and Catalytic Performance of Visible-Light Photocatalyst Ag/AgBr/(BiO)2CO3, Chemical Industry and Engineering 33 (2016) 1-7.
【58】V. Sivakumar; R. Suresh; K. Giribabu; V. Narayanan, AgVO3 nanorods: Synthesis, characterization and visible light photocatalytic activity, Solid State Sciences 39 (2015) 34-39.
【59】A. Singh; D. P. Dutta; A. Ballal; A. K. Tyagi; M. H. Fulekar, Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires, Materials Research Bulletin 51 (2014) 447-454.
【60】T. A. Vu; C. D. Dao; T. T. T. Hoang; P. T. Dang; H. T. K. Tran; K. T. Nguyen; G. H. Le; T. V. Nguyen; G. D. Lee, Synthesis of novel silver vanadates with high photocatalytic and antibacterial activities, Materials Letters 123 (2014) 176-180.
【61】C. Shifu; Z. Wei; L. Wei; Z. Huaye; Y. Xiaoling; C. Yinghao, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, Journal of Hazardous Materials 172 (2009) 1415-1423.
【62】W. Zhao; Y. Guo; Y. Faiz; W.-T. Yuan; C. Sun; S.-M. Wang; Y.-H. Deng; Y. Zhuang; Y. Li; X.-M. Wang; H. He; S.-G. Yang, Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis, Applied Catalysis B: Environmental 163 (2015) 288-297.
【63】A. Qian; K. Zhuo; B. N. Choi; S. J. Lee; J. W. Bae; P. J. Yoo; C.-H. Chung, Capacitance enhancement in supercapacitors by incorporating ultra-long hydrated vanadium-oxide nanobelts into graphene, Journal of Alloys and Compounds 688, Part B (2016) 814-821.
【64】B. Tian; R. Dong; J. Zhang; S. Bao; F. Yang; J. Zhang, Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation, Applied Catalysis B: Environmental 158–159 (2014) 76-84.
【65】X.-D. Zhu; Y.-J. Wang; R.-J. Sun; D.-M. Zhou, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere 92 (2013) 925-932.
【66】Q. F. M. j. Shi, J. S. Cao Preparetion and photocatalytic properities of silver vanadate modified titania under visible light irradiation, China Environmental Science 35 (2015) 3317~3324