|
1.Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch. Mikrosk. Anat. 1873, 9, 413-468. 2.Liebermann, T.; Knoll, W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf. 2000, 171, 115-130. 3.Fort, E.; Grésillon, S. Surface enhanced fluorescence. J. Phys. D: Appl. Phys. 2008, 41, 013001. 4.Ming, T.; Zhao, L.; Yang, Z.; Chen, H.; Sun, L.; Wang, J.; Yan, C. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett. 2009, 9, 3896-3903. 5.Osawa, M.; Ataka, K.; Yoshii, K.; Nishikawa, Y. Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 1993, 47, 1497-1502. 6.Kundu, J.; Le, F.; Nordlander, P.; Halas, N. J. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 2008, 452, 115-119. 7.Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic nanoparticle arrays: a common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano 2008, 2, 707-718. 8.Wei, H.; Hao, F.; Huang, Y.; Wang, W.; Nordlander, P.; Xu, H. Polarization dependence of surface-enhanced raman scattering in gold nanoparticle-nanowire systems. Nano Lett. 2008, 8, 2497-2502. 9.Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601-626. 10.Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced raman scat tering. Science 1997, 275, 1102-1106. 11.Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R.; Feld, M. S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667-1670. 12.Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 1999, 83, 4357-4360. 13.Barron, L. D. Molecular Light Scattering and Optical Activity. 2nd ed.; Cambridge University Press: New York, 2004. 14.Polavarapu, P. L.; Zhao, C. Vibrational circular dichroism: a new spectroscopic tool for biomolecular structural determination. Fresenius' J. Anal. Chem. 2000, 366, 727-734. 15.Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag 1902, 4, 396-402. 16.Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). J. Opt. Soc. Am. 1941, 31, 213-222. 17.Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874-881. 18.Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag: New York, 1988. 19.Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep 2005, 408, 131-314. 20.Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297. 21.Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V.; Echenique, P. M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007, 70, 1-87. 22.Ebbesen, T. W.; Genet, C.; Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today 2008, 61, 44-50. 23.Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: physics and applications. J. Phys. D: Appl. Phys. 2012, 45, 113001. 24.Biagioni, P.; Huang, J.-S.; Duò, L.; Finazzi, M.; Hecht, B. Cross resonant optical antenna. Phys. Rev. Lett. 2009, 102, 256801. 25.Biagioni, P.; Savoini, M.; Huang, J.-S.; Duò, L.; Finazzi, M.; Hecht, B. Near-field polarization shaping by a near-resonant plasmonic cross antenna. Phys. Rev. B 2009, 80, 153409. 26.Biagioni, P.; Wu, X.; Savoini, M.; Ziegler, J.; Huang, J.-S.; Duò, L.; Finazzi, M.; Hecht, B. Tailoring the interaction between matter and polarized light with plasmonic optical antennas. Proc. SPIE 2011, 7922, 79220C. 27.Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419-422. 28.Greenfield, N. J. Applications of circular dichroism in protein and peptide analysis. Trends Anal. Chem. 1999, 18, 236-244. 29.Yang, N.; Tang, Y.; Cohen, A. E. Spectroscopy in sculpted fields. Nano Today 2009, 4, 269-279. 30.Yang, N.; Cohen, A. E. Local geometry of electromagnetic fields and its role in molecular multipole transitions. J. Phys. Chem. B 2011, 115, 5304-5311. 31.Inoue, Y.; Ramamurthy, V. Chiral Photochemistry. Marcel Dekker: New York, 2004. 32.Lipkin, D. M. Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 1964, 5, 696-700. 33.Tang, Y.; Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 2010, 104, 163901. 34.Craig, D. P.; Thirunamachandran, T. New approaches to chiral discrimination in coupling between molecules. Theor. Chem. Acc. 1999, 102, 112-120. 35.Tang, Y.; Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011, 332, 333-336. 36.Hendry, E.; Mikhaylovskiy, R. V.; Barron, L. D.; Kadodwala, M.; Davis, T. J. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Lett. 2012, 12, 3640-3644. 37.Schäferling, M.; Yin, X.; Giessen, H. Formation of chiral fields in a symmetric environment. Opt. Exp. 2012, 20, 26326-26336. 38.Meinzer, M.; Hendry, E.; Barnes, W. L. Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Phys. Rev. B 2013, 88, 041407. 39.Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S.; Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 2005, 94, 017402. 40.Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83-90. 41.Biagioni, P.; Huang, J.-S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402. 42.Papakostas, A.; Potts, A.; Bagnall, D. M.; Prosvirnin, S. L.; Coles, H. J.; Zheludev, N. I. Optical manifestations of planar chirality. Phys. Rev. Lett. 2003, 90, 107404. 43.Kuwata-Gonokami, M.; Saito, N.; Ino, Y.; Kauranen, M.; Jefimovs, K.; Vallius, T.; Turunen, J.; Svirko, Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 2005, 95, 227401. 44.Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513-1515. 45.Decker, M.; Zhao, R.; Soukoulis, C. M.; Linden, S.; Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 2010, 35, 1593-1595. 46.Quidant, R.; Kreuzer, M. Plasmons offer a helping hand. Nat. Nanotechnol. 2010, 5, 762-763. 47.Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783-787. 48.Schäferling, M.; Dregely, D.; Hentschel, M.; Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2012, 2, 031010. 49.Zhao, Y.; Belkin, M. A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870. 50.Shen, X. B.; Asenjo-Garcia, A.; Liu, Q.; Jiang, Q.; García de Abajo, F. J.; Liu, N.; Ding, B. Q. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128-2133. 51.Valev, V. K.; Baumberg, J. J.; Sibilia, C.; Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 2013, 25, 2517-2534. 52.Frank, B.; Yin, X.; Schäferling, M.; Zhao, J.; Hein, S. M.; Braun, P. V.; Giessen, H. Large-area 3D chiral plasmonic structures. ACS Nano 2013, 7, 6321-6329. 53.Davis, T. J.; Hendry, E. Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Phys. Rev. B 2013, 87, 085405. 54.García-Etxarri, A.; Dionne, J. A. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B 2013, 87, 235409. 55.O'Keefe, A.; Deacon, D. A. G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum 1988, 59, 2544-2551. 56.Ballard, J.; Strong, K.; Remedios, J. J.; Page, M.; Johnston, W. B. A coolable long path absorption cell for laboratory spectroscopic studies of gases. J. Quant. Spectrosc. Radiat. Transfer 1994, 52, 677-691. 57.Vallance, C. Innovations in cavity ringdown spectroscopy. New J. Chem. 2005, 29, 867-874. 58.Scherer, J. J.; Paul, J. B.; O'Keefe, A.; Saykally, R. J. Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams. Chem. Rev. 1997, 97, 25-51. 59.O' Keefe, A.; Scherer, J. J.; Cooksy, A. L.; Sheeks, R.; Heath, J.; Saykally, R. J. Cavity ring down dye laser spectroscopy of jet-cooled metal clusters: Cu2 and Cu3. Chem. Phys. Lett. 1990, 172, 214-218. 60.Heath, J. R.; Cooksy, A. L.; Gruebele, M. H. W.; Schmuttenmaer, C. A.; Saykally, R. J. Diode-laser absorption spectroscopy of supersonic carbon cluster beams: the ν3 spectrum of C5. Science 1989, 244, 564-566. 61.Benard, D. J.; Winker, K. B. Chemical generation of optical gain at 471 nm. J. Appl. Phys 1991, 69, 2805-2809. 62.Yu, T.; Lin, M. C. Kinetics of phenyl radical reactions studied by the "cavity-ring-down" method. J. Am. Chem. Soc. 1993, 115, 4371-4372. 63.Hsu, C. Y.; Huang, H. Y.; Lin, K. C. Br 2 elimination in 248-nm photolysis of CF 2 Br 2 probed by using cavity ring-down absorption spectroscopy. J. Chem. Phys. 2005, 123, 134312-134318. 64.Snyder, K. L.; Zare, R. N. Cavity ring-down spectroscopy as a detector for liquid chromatography. Anal. Chem. 2003, 75, 3086-3091. 65.Bechtel, K. L.; Zare, R. N.; Kachanov, A. A.; Sanders, S. S.; Paldus, B. A. Moving beyond traditional UV-visible absorption detection: cavity ring-down spectroscopy for HPLC. Anal. Chem. 2005, 77, 1177-1182. 66.Brewster's angle - Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Brewster's_angle. 67.Encyclopedia of Laser Physics and Technology - Brewster plates. http://www.rp-photonics.com/brewster_plates.html. 68.Pipino, A. C. R.; Hudgens, J. W.; Huie, R. E. Evanescent wave cavity ring-down spectroscopy for probing surface processes. Chem. Phys. Lett. 1997, 280, 104-112. 69.Shaw, A. M.; Hannon, T. E.; Li, F.; Zare, R. N. Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy. J. Phys. Chem. B 2003, 107, 7070-7075. 70.Zalicki, P.; Zare, R. N. Cavity ringdown spectroscopy for quantitative absorption measurements. J. Chem. Phys. 1995, 102, 2708-2717. 71.Muir, R. N.; Alexander, A. J. Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy. Phys. Chem. Chem. Phys 2003, 5, 1279-1283. 72.Romanini, D.; Lehmann, K. K. Ringdown cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta. J. Chem. Phys. 1993, 99, 6287-6301. 73.Jongma, R. T.; Boogaarts, M. G. H.; Holleman, I.; Meijer, G. Trace gas detection with cavity ring down spectroscopy. Rev. Sci. Instrum. 1995, 66, 2821-2828. 74.Meijer, G.; Boogaarts, M. G. H.; Jongma, R. T.; Parker, D. H.; Wodtke, A. M. Coherent cavity ring down spectroscopy. Chem. Phys. Lett. 1994, 217, 112-116. 75.Martin, J.; Paldus, B. A.; Zaliki, P.; Wahl, E. H.; Owano, T. G.; Harris, J. S.; Kruger, C. H.; Zare, R. N. Cavity ring-down spectroscopy with Fourier-transform-limited light pulses. Chem. Phys. Lett. 1996, 258, 63-70. 76.Hodges, J. T.; Looney, J. P.; van Zee, R. D. Response of a ringdown cavity to an arbitrary excitation. J. Chem. Phys. 1996, 105, 10278-10288. 77.Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370-4379. 78.Axelrod, D.; Burghardt, T. P.; Thompson, N. L. Total internal reflection fluorescence. Ann. Rev. Biophys. Bioeng. 1984, 13, 247-268. 79.Axelrod, D.; Hellen, E. H.; Fulbright, R. M. In Topics in Fluorescence Spectroscopy: Biochemical Applications, Lakowicz, J. R., Ed. Kluwer Academic Publishers: New York, 2002; Vol. 3. 80.Newport Corporation. http://www.nxtbook.com/nxtbooks/newportcorp/resource2011/#/1448. 81.Berden, G.; Engeln, R. Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley-Blackwell: New York, 2009. 82.CRD Optics, Inc. - Cavity Ringdown Components. http://www.crd-optics.com/crd-mirrors-vis.html. 83.Hofstetter, H.; Hofstetter, O.; Schurig, V. Rapid separation of enantiomers in perfusion chromatography using a protein chiral stationary phase. J. Chromatogr., A 1997, 764, 35-41. 84.Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.; Etrich, C.; Kern, K. Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett. 2010, 10, 3596-3603. 85.Liu, C.-H.; Chen, C.-H.; Chen, S.-Y.; Yen, Y.-T.; Kuo, W.-C.; Liao, Y.-K.; Juang, J.-Y.; Kuo, H.-C.; Lai, C.-H.; Chen, L.-J.; Chueh, Y.-L. Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell. Nano Lett. 2011, 11, 4443-4448. 86.Haldar, A.; Maity, S.; Manik, N. B. Study on typical behavior of transient nature (I-t)and hysterisis nature of I–V characteristics of dye doped solid state thin film photoelectrochemical cell. Ionics 2007, 13, 267-272. 87.Huck, N. P. M.; Jager, W. F.; de Lange, B.; Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 1996, 273, 1686-1688. 88.de Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.; Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality. Science 2004, 304, 278-281. 89.Inoue, Y. Asymmetric photochemical reactions in solution. Chem. Rev. 1992, 92, 741-770. 90.Ohkubo, K.; Hamada, T.; Watanabe, M. Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione}. J. Chem. Soc., Chem. Commun., 1993, 1070-1072.
|