|
[1] A.K. Jain, M.N. Murty and P. J. Flynn. Data Clustering: A Review. ACM Computing Surveys, vol. 31, no. 3, pp.264-323, 1999. [2] W.E. Wright. A formalization of cluster analysis and gravitational clustering. Doctoral Dissertation. Washington University, 1972. [3] Yen-Jen Oyang, Chien-Yu Chen, and Tsui-Wei Yang. A Study on the Hierarchical Data Clustering Algorithm Based on Gravity Theory, Proceedings of 5th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 350-361, 2001. [4] Yen-Jen Oyang, Chien-Yu Chen, Shien-Ching Huang, and Cheng-Fang Lin. Characteristics of a Hierarchical Data Clustering Algorithm Based on Gravity Theory, Technical Report of NTUCSIE 02-01. (Available at http://mars.csie.ntu.edu.tw/~cychen/publications_on_dm.htm) [5] Chien-Yu Chen, Shien-Ching Huang, and Yen-Jen Oyang. An Incremental Hierarchical Data Clustering Algorithm Based on Gravity Theory, Proceedings of 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, pp.237-250, 2002. [6] G. Karypis, E.-H. Han, V. Kumar. CHAMELEON: A hierarchical Clustering Algorithm Using Dynamic Modeling. COMPUTER, Vol. 32, pp.68-75, 1999. [7] S. Guha, R. Rastogi and K. Shim. Cure: An efficient clustering algorithm for large databases. In Proc. 1999 ACM-SIGMOD Int Conf. Management of Data (SIGMOD’98), pp. 73-84, Seattle, WA, 1998. [8] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. In Proc. of the 1996 ACM-SIGMOD International Conference on Management of (SOGMOD-96) , pp. 103-114 , Jun. 1996 [9] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco, 2000. [10] M. Ester, H-P. Kriegel, J. Sander, X. Xu. Clustering for Mining in Large Spatial Databases. Special Issue on Data Mining, KI-Journal, ScienTec Publishing, Vol. 1, pp. 18-24, 1998. [11] D. Eppstein. Fast hierarchical clustering and other applications of dynamic closet pairs. The ACM Journal of Experimental Algorithms, vol. 5, no.1, pp.1-23, 2000. [12] J.Orear. Physics. Macmillan Publishing Co., Inc., New York, 1979 [13] I.H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann Publishers, San Francisco, 2000. [14] R.C. Dubes. How many clusters are best? --- an experiment. Pattern Recognition, vol. 20, no. 6, pp. 645-663, 1987. [15] R.V. Hogg and E.A. Tanis, Probability and statistical inference, Prentice Hall, New Jersey, 2001. [16] Kurita, T., An efficient agglomerative clustering algorithm using a heap, Pattern Recognition, Vol. 24, No.3, pp. 205-209, 1991. [17] Richard O. Duda, Peter E. Hart and David G. Stork. Pattern Classification, Wiley-Interscience Publication, 2001. [18] R. Ng, J. Han. "Efficient and Effective Clustering Methods for Spatial Data Mining". Proceeding of the 20''" VLDB Conference, Santiago, Chile, 1994. [19] P.S. Bradley and U.M. Fayyad. Refining initial points for K-Means clustering. In Proc. 15th Intl. Conf. on Machine Learning, pages 91--99, 1998 [20] P.S. Bradley and U.M. Fayyad and C. Reina. Scaling clustering algorithms to large databases. In Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining(KDD’98), pages 9-15, New York, Aug. 1998. [21] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990. [22] J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58:236--244, 1963. [23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining(KDD’96), pages 226-231, Portland, OR, Aug. 1996 [24] M. Ankerst, M. Breunig, H.-P. Kriegel, and J.Sander. OPTICS: Ordering points to identify the clustering structure. In Proc. 1999 ACM-SIGMOD Int Conf. Management of Data (SIGMOD’99), pages 49-60, Philadelphia, PA, June 1999. [25] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with noises. In Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining(KDD’98), pages 58-65, New York, Aug. 1998 [26] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to spatial data mining. In Proceedings of the 23rd VLDB Conference, pages 186--195, Athens, Greece, 1997. [27] C. Sheikholeslami, S. Chatterjee, A. Zhang. WaveCluster: A- MultiResolution Clustering Alproach for Very Large Spatial Database. In Proc. 1998 Conf. VLDB, New York, USA, 1998. [28] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD Conference on Management of Data, Seattle, June 1998. [29] M. Stonebraker, J. Frew, K. Gardels and J. Meredith. The Sequoia 2000 Storage Benchmark. Proceedings of SIGMOD, pp. 2 — 11, 1993
|