跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳盈綺
研究生(外文):Ying-Chi Chen
論文名稱:黃耆水溶性多醣之劃分與分子特徵
論文名稱(外文):Fractionation and characterization of water-soluble polysaccharides from Astragalus membranaceus
指導教授:呂廷璋
指導教授(外文):Ting-Jang Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:87
中文關鍵詞:膜莢黃耆多醣果膠多醣Yariv antigen四級銨鹽
外文關鍵詞:Astragalus membranaceus (Fisch.)Bge.polysaccharidespectic polysaccharidesYariv antigencetyl trimethyl ammonium bromide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中藥黃耆為豆科植物黃耆Astragalus membranaceus (Fisch.)Bunge的乾燥根,具有抗病毒、抗腫瘤、免疫調節、促進機體代謝等功效,多醣為其主要活性成分之ㄧ。本研究之目的為探討黃耆水溶性多醣之特徵與組成。結果顯示,黃耆水溶性多醣中的類澱粉多醣,α-(1,4;1,6)-D-glucans,佔了黃耆水溶性多醣之87.9%,利用碘呈色反應呈現藍紫色,可利用α-amylase、amyloglucosidase兩澱粉酵素水解並去除。非澱粉多醣為不被α-amylase、amyloglucosidase水解之部分,佔了水溶性多醣之12.1%,可利用四級銨鹽(cetrl trimethyl ammonium bromide, CTAB)選擇性錯合沉澱反應劃分成中性與酸性多醣區分。非澱粉多醣含有42.1%之醛醣酸,中性醣組成主要有阿拉伯糖、半乳糖,葡萄糖、甘露糖與岩藻糖,相對莫耳百分比為47.5:33.6:8.9:8.3:1.7%。進一步利用四級銨鹽(CTAB,cetyl trimethyl ammonium bromide)帶正電荷之特性選擇性錯合沉澱具高醛糖酸含量之非澱粉多醣,當中有21.3%可被四級銨鹽錯合沉澱,稱之為酸性多醣區分,不被四級銨鹽錯合沉澱者稱之為中性多醣區分。酸性多醣區分其單醣組成主要有阿拉伯糖(29.8%)、半乳糖(21.3%)、半乳醣醛酸(37.7%)及葡萄醣醛酸(2.7%),重量平均分子量為130kDa。中性多醣區分之主要單醣組成有阿拉伯糖(54.4%)、半乳糖(34.3%)、甘露糖(9.7%)與葡萄糖(1.5%),重量平均分子量為189kDa,為一廣分佈之多醣。利用陰離子交換樹脂可將中性多醣區分劃分成三區塊。中性與酸性多醣區分利用periodate-thiobarbituric acid method和β-D-glucosyl Yariv antigen皆呈現正反應,證明了KDO (2-keto-3-deoxy-D-manno-octulosonic acid)和arabinogalactan Type Ⅱ之存在。結果顯示經此一流程可獲得高醛醣酸含量、具有果膠多醣特徵之黃耆多醣。
The dried root of Astragalus membranaceus (Fisch.) Bunge, also called Astragali radix, is an important traditional Chinese medicine. It has the functions of anti-virus, anti-tumor, and immuno-modulating activities. Polysaccharide is one of the active components of this herb. The focus of this study is to investigate the characteristics of water-soluble polysaccharides from A. membranaceus. The α-(1,4; 1,6)-D-glucans, the starch-like polysaccharides showing blue color under iodine-staining, in the hot-water extracted crude polysaccharides were digested and removed by α-amylase and amyloglucosidase digestion. The non-starch polysaccharides, the non-digestible portion, were fractionated by using selective precipitation with cetyl trimethyl ammonium bromide, CTAB, into acidic and neutral polysaccharides fractions. The α-(1,4; 1,6)-D-glucans was found to be the most abundant component in the crude polysaccharides and its content was 87.9%. The non-starch polysaccharides contained 42.1% of uronic acids and the sugar compositions of the neutral portion were arabinose, galactose, glucose, mannose and fucose in the molar ratio of 47.5: 33.6: 8.9: 8.3:1.7 %. The CTAB could react with the polysaccharides with high ratio of uronic acids to form precipitates and successfully separated non-starch polysaccharides into acidic and neutral polysaccharides fractions with ratio of 21.3% and 78.7%, respectively. The acidic polysaccharides fraction consisted of arabinose (29.8%), galactose (21.3%), galacturonic acid (37.7%), and glucuronic acid (2.7%). The weight-average molecular weight of acidic polysaccharides fraction was 130 kDa. The neutral polysaccharides fraction consisted of arabinose (54.4%), galactose (34.3%), mannose (9.7%) and glucose (1.5%). The weight-average molecular weight of neutral polysaccharides fraction was 189 kDa with wide range of distribution. This fraction can be further divided into three sub-fractions by anion- exchange chromatography. Both acidic and neutral polysaccharide fractions showed positive reaction with periodate-thiobarbituric acid and β-D-glucosyl Yariv antigen assays indicated the existing of KDO (2-keto-3-deoxy-D-manno-octulosonic acid) and branched (1,3; 1,6)-arabinogalactans. These results indicated existing of hairy domains of pectic polysaccharides in the acidic polysaccharides and low-uronic acid containing polysaccharides in neutral polysaccharides fraction of A. membranaceus.
中文摘要.....................................Ι
abstract.........................................Ⅱ
總目錄.........................................Ⅲ
圖目錄.........................................Ⅵ
表目錄.........................................Ⅶ
壹、前言.................................................1
貳、文獻回顧.............................................................2
一、黃耆介紹..................................................2
(一) 型態與分佈.............................................2
(二) 栽培環境與生理特性................................................2
(三) 活性成分...............................................................3
1. 多醣類..........................................3
2. 皂苷類..........................................4
(四) 生理活性.......................................................4
1. 抗病毒.................................................................5
2. 抗腫瘤..................................5
3. 清除自由基能力..................5
4. 對免疫系統之作用..............5
5. 造血及心血管系統保護作用..............6
6. 肝臟保護作用........................................................................7
7. 促進機體代謝.................................7
8. 其他.....................................................................7
二、果膠多醣(pectic polysaccharide)...............................8
(一) Homogalacturonan(HG)......................................8
(二) Xylogalacturonan(XGA)......................................8
(三) RhamnogalacturonanⅠ(RGⅠ).................................9
(四) RhamnogalacturonanⅡ(RGⅡ)...................................9
三、具活性成分之果膠多醣...........................................14
(一) Arabinogalactan TypeⅡ(AGⅡ)............................14
(二) RhamnogalacturonanⅠ(RGⅠ)................................15
參、材料與方法...................................................19
一、實驗材料.............................................................19
二、實驗藥品與試劑..........................................................19
(一) 化學試劑................................................19
(二) 標準品....................................................19
(三) 酵素.....................................20
三、樣品製備方式...............................................20
(一) 熱水萃取物之製備........................................20
(二) 水溶性粗多醣之製備.....................................20
(三) 非澱粉多醣...................................20
(四) 陰離子交換樹脂分析水溶性粗多醣成分.....................20
(五) CTAB沉澱酸性多醣區分與中性多醣區分.....................21
四、分析方法................................................21
(一) 水分含量測定...............................................21
(二) 固形物含量測定..........................21
(三) 碳水化合物含量測定............................21
(四) 醛醣酸含量測定................................22
(五) KDO含量測定........................................22
(六) 蛋白質含量測定................................22
(七) 單醣組成測定(TFA hydrolysis).......................22
(八) 單醣組成測定(methanolysis).................................23
(九) 分子量測定....................................................24
(十) β-D-glucosyl Yariv antigen test...........................24
五、實驗流程.........................................................26
肆、結果與討論..........................................27
一、水萃物與水溶性粗多醣之組成分析...................27
(一) 黃耆熱水萃取物與水溶性粗多醣組成分析..............27
(二) 水溶性粗多醣分子量分佈........................28
(三) 水溶性粗多醣組成分析.................................29
(四) 水溶性粗多醣各成分之單醣組成分析......................30
二、水溶性粗多醣之劃分..........................................33
(一) α-(1,4;1,6)-D-葡聚醣之水解及非澱粉多醣之分離...................33
(二) 中性及酸性多醣區分之劃分..................................37
1. 中性多醣區分.......................................39
甲、多醣組成分析...............................39
乙、分子量分佈................................................40
丙、單醣組成分析.......................................45
2. 酸性多醣區分...................................................46
甲、多醣組成分析...................................................................46
乙、分子量分佈.......................................................................47
丙、單醣組成分析...................................................................48
三、多醣結構偵測....................................................49
(一) KDO含量測定..........................................49
(二) β-D-glucosyl Yariv antigen test....................50
伍、結論..........................................52
陸、參考文獻..................................53
柒、附錄..........................................62
昭人出版社編輯部主編。1981。中藥大辭典。昭人出版社。台中,台灣。
陳麗娟、沈美玲、王美瑛。1981。黃芪多糖對小鼠吞噬功能的影響。中國藥理學報。2(3):200。
王道苑、楊蔚怡。1982。黃芪多糖對小鼠肝細胞核酸代謝的影響。中國藥理學報。3(8):204-206。
方聖鼎、陳嬿、徐小異、葉淳渠、翟世康、沈美玲。1982。中藥黃芪有效成分的研究.Ι多醣體的分離、性質及其生理活性。有機化學。1:26。
黃喬書、呂歸寶、李雅臣、郭俊華、王瑞香。1982。黃芪多糖的研究。藥學學報。17(3):200。
王道苑、張衛、許麟英。1987。黃芪多糖對核醣核酸酶及其抑制因子平衡系統的保護作用。中西醫結合雜誌。7(2):93-95。
方積年、Wagner, H。1988。黃芪葡聚多糖的化學結構。化學學報。46:1101-1104。
李先榮、康永、牛豔豔、程霞。1989。注射用黃芪多糖藥理作用的研究 2:對免疫藥理作用研究。中成藥。11(5):26。
王立新、韓哲武。1992。黃芪多糖對內毒素致小鼠毒性損傷的作用。藥學學報。27(1):5-9。
張銀娣、沈建平、朱樹華、黃大貺、丁勇、張曉林。1992。黃芪皂苷抗實驗性甘損傷作用。藥學學報。27(6):401-406。
趙克勝、丁麗軒、孔海燕、田淑媛、金伯泉、劉雪松。1993。黃芪多糖增強人外周血單核細胞產生腫瘤壞死因子的研究。中國中西醫結合雜誌。13(5):263。
王光、周正任、婁丹、史曉丹、梁再賦、吳益民、于香云。1994。黃芪多糖對IL-2/LAK抗腫瘤增強作用的動物實驗研究。中國免疫學雜誌。10(6):359-361。
劉星堦、王美英、吳厚生、趙杏芳、李暉。1994。黃芪多糖的分離及其免疫活性的研究。天然產物研究與開發。6(1):23-31。
金虹。1998。從IL-2水平探得黃芪多糖的免疫調節作用。中國免疫學雜誌。5(3):308-310。
徐先祥、彭代銀、劉青云。2000。黃芪皂苷類成分對心血管系統的作用。北京中醫藥大學學報。28:128-130。
張仲平、洪介民。2000。黃芪多糖對體外人骨髓造血祖細胞生成的影響。中藥藥理與臨床。16(1):16-17。
王瑩、趙毅民、張起鳳、喬善義、齊春會、張永祥。2001。黃芪中一種新葡聚糖的分離純化與化學結構研究。中草藥。32(11):962-964。
王志洁、黃鐵牛、劉焱文、楊占秋、方學韞。2001。黃芪總皂苷抗HSV2的實驗研究。浙江中醫學院學報。25(5):43-45。
石富勝、楊正國、狄桂萍、羅向東、楊宗城。2001。黃芪皂苷對燒傷患者血管內皮細胞及其功能的影響。中國中西醫結合雜誌。21(10):750-751。
王志洁、黃鐵牛、劉焱文、楊占秋、肖紅。2002。黃芪總多糖抗HSV2的實驗研究。安徽中醫學院學報。21(2):34-36。
李麗婭、凌秋、崔洪波、初鐵軼、李延平。2002。黃芪多糖抗流感病毒的實驗研究。中國中藥科技。9(6):354-355。
許浪、張碧清、孫遠昌、顏建輝。2002。黃芪對受輻射損傷大鼠脾臟的促再生作用。4(1):9-10。
高建、徐先祥、徐先俊、倪受東。2002。黃芪總皂苷抗血栓形成作用實驗研究。中成藥。24(2):116-118。
謝麟、長青。2002。論動物用中草藥劑的新藥開發。動藥科技。29(11):34-36。
蔣斗發、殷昌好、俞能高、葛紹祥。黃芪總皂苷對年老大鼠血液流變性的影響。2002。基層中藥雜誌。16(5):15-16。
夏星、申萍、嚴翠娥、DaoNguyen。2003。黃耆多糖在長期骨髓細胞培養中支持體外造血的作用。中國中醫藥信息雜誌。10(4):27-29。
行政院衛生署中華藥典中藥集編修小組。2004。中華中藥典。行政院衛生署。台北,台灣。
李世裕。2004。黃耆皂苷藥理活性之研究。國防醫學院藥學研究所碩士論文。台北,台灣。
孟丹。2004。黃芪總皂苷保護心肌損傷的機制研究。南京醫科大學內科學博士論文。南京,中國大陸。
余椿生。2005。黃芪。食品與藥品。7(8A):72-73。
王斯弘。2007。黃耆對周邊神經組織再生的影響。中國醫藥大學醫學研究所碩士學位論文。台中,台灣。
楊映雪、陳建業、王亞平。2007。黃芪總黃酮的抗氧化作用。川北醫學院院報。22(6):606-608。
Bertaud, F., Sundberg, A., & Holmbom, B. (2002). Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydrate Polymers, 48(3), 319-324.
Bradford, M. M. (1976). Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1-2), 248-254.
Brekhman Ⅱ. Man and biologically active substances. Pergamon press. New York. 1980.
Chun, H., Shin, D. H., Hong, B. S., Cho, W. D., Cho, H. Y., & Yang, H. C. (2002). Biochemical properties of polysaccharides from black pepper. Biological & Pharmaceutical Bulletin, 25(9), 1203-1208.
Daas, P. J. H., Arisz, P. W., Schols, H. A., De Ruiter, G. A., & Voragen, A. G. J. (1998). Analysis of partially methyl-esterified galacturonic acid oligomers by high-performance anion-exchange chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Biochemistry, 257(2), 195-202.
da Silva, B. P., & Parente, J. P. (2002). Chemical properties and biological activity of a polysaccharide from Melocactus depressus. Planta Medica, 68(1), 74-76.
Deruiter, G. A., Schols, H. A., Voragen, A. G. J., & Rombouts, F. M. (1992). Carbohydrate Analysis of Water-Soluble Uronic Acid-Containing Polysaccharides with High-Performance Anion-Exchange Chromatography Using Methanolysis Combined with TFA Hydrolysis Is Superior to 4 Other Methods. Analytical Biochemistry, 207(1), 176-185.
Diallo, D., Paulsen, B. S., Liljeback, T. H. A., & Michaelsen, T. E. (2001). Polysaccharides from the roots of Entada africana Guill. et Perr., Mimosaceae, with complement fixing activity. Journal of Ethnopharmacology, 74(2), 159-171.
Diallo, D., Paulsen, B. S., Liljeback, T. H. A., & Michaelsen, T. E. (2003). The malian medicinal plant Trichilia emetica; studies on polysaccharides with complement fixing ability. Journal of Ethnopharmacology, 84(2-3), 279-287.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356.
Fang, X. B., Jiang, B., & Wang, X. L. (2006). Purification and partial characterization of an acidic polysaccharide with complement fixing ability from the stems of Avicennia marina. Journal of Biochemistry and Molecular Biology, 39(5), 546-555.
Fry, S. C. (1987). Intracellular Feruloylation of Pectic Polysaccharides. Planta, 171(2), 205-211.
Guo, T. J., Matsumoto, T., Kikuchi, Y., Ikejima, T., Wang, B. X., & Yamada, H. (2000). Effects of a pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. on interleukin 6 production of murine B cells and B cell lines. Immunopharmacology, 49(3), 307-316.
Gao, Q. P., Kiyohara, H., Cyong, J. C., & Yamada, H. (1988). Characterization of anti-complementary acidic heteroglycans from the leaves of Panax-ginseng ca meyer. Carbohydrate Research, 181, 175-187.
Gao, Q. P., Kiyohara, H., Cyong, J. C., & Yamada, H. (1991). Chemical-properties and anticomplementary activities of heteroglycans from the leaves of Panax-ginseng.Planta Medica, 57(2), 132-136.
Hokputsa, S., Harding, S. E., Inngjerdingen, K., Jumel, K., Michaelsen, T. E., Heinze, T., Koschella, A., & Paulsen, B. S. (2004). Bioactive polysaccharides from the stems of the Thai medicinal plant Acanthus ebracteatus: their chemical and physical features. Carbohydrate Research, 339(4), 753-762.
Inngjerdingen, K. T., Coulibaly, A., Diallo, D., Michaelsen, T. E., & Paulsen, B. S. (2006). A complement fixing polysaccharide from Biophytum petersianum Klotzsch, a medicinal plant from Mali, West Africa. Biomacromolecules, 7(1), 48-53.
Inngjerdingen, K., Michaelsen, T.E., Diallo, D., & Paulsen, B.S. (2003). In perez S (ed) Abstracts, 12th European Carbohydrate Symponisum, p20.
Ishii. T. (1997). O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiology, 113(4), 1265-1272.
Ishii, T., & Matsunaga, T. (2001). Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry, 57(6), 969-974.
Karkhanis, Y. D., Zeltner, J. Y., Jackson, J. J., & Carlo, D. J. (1978). New and Improved Microassay to Determine 2-Keto-3-Deoxyoctonate in Lipopolysaccharide of Gram-Negative Bacteria. Analytical Biochemistry, 85(2), 595-601.
Kelly GS. Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern Med Rev 1999;4:96-103.
Kintner, P. K., & Vanburen, J. P. (1982). Carbohydrate Interference and Its Correction in Pectin Analysis Using the m-Hydroxydiphenyl Method. Journal of Food Science, 47(3), 756-764.
Kiyohara, H., Cyong, J. C., & Yamada, H. (1989). Studies on Polysaccharides from Angelica-Acutiloba .11. Relationship between Structure and Activity of an Anticomplementary Arabinogalactan from the Roots of Angelica-Acutiloba Kitagawa. Carbohydrate Research, 193, 193-200.
Kiyohara, H., Cyong, J. C., & Yamada, H. (1989). Studies on Polysaccharides from Angelica-Acutiloba .12. Relationship between Structure and Activity of the Ramified Region in Anti-Complementary Pectic Polysaccharides from Angelica Acutiloba Kitagawa. Carbohydrate Research, 193, 201-214.
Kiyohara, H., Takemoto, N., Zhao, J. F., Kawamura, H., & Yamada, H. (1996). Pectic polysaccharides from roots of Glycyrrhiza uralensis: Possible contribution of neutral oligosaccharides in the galacturonase-resistant region to anti-complementary and mitogenic activities. Planta Medica, 62(1), 14-19.
Kiyohara, H., & Yamada, H. (1989). Studies on Polysaccharides from Angelica-Acutiloba .10. Structure of an Anti-Complementary Arabinogalactan from the Root of Angelica Acutiloba Kitagawa. Carbohydrate Research, 193, 173-192.
Kiyohara, H., & Yamada, H. (1989). Studies on Polysaccharides from Angelica-Acutiloba .9. Structure of the Neutral Carbohydrate Side-Chains in Anti-Complementary Acidic Polysaccharides from the Root of Angelica-Acutiloba Kitagawa. Carbohydrate Research, 187(2), 255-265.
Kiyohara, H., Zhang, Y. W., & Yamada, H. (1997). Effect of exo-beta-D-(1->3)-galactanase digestion on complement activating activity of neutral arabinogalactan unit in a pectic arabinogalactan from roots of Angelica acutiloba Kitagawa. Carbohydrate Polymers, 32(3-4), 249-253.
Luo, Y. M., Qin, Z., Hong, Z., Zhang, X. M., Ding, D., Fu, J. H., Zhang, W. D., & Chen, J. (2004). Astragaloside IV protects against ischemia brain injury in a murine model of transient focal ischemia. Neuroscience Letters, 363(3), 218-223.
Ma, X. F., Tu, P. F., Chen, Y. J., Zhang, T. Y., Wei, Y., & Ito, Y. C. (2004). Preparative isolation and purification of isoflavan and pterocarpan glycosides from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A, 1023(2), 311-315.
Matsumoto, T., & Yamada, H. (1996). The pectic polysaccharide from Bupleurum falcatum L enhances clearance of immune complexes in mice. Phytotherapy Research, 10(7), 585-588.
Miyazaki, T., & Nishijima, M. (1982). Studies on Fungal Polysaccharides .32. Structural Examination of an Alkali-Extracted, Water-Soluble Heteroglycan of the Fungus Ganoderma-Lucidum. Carbohydrate Research, 109(Nov), 290-294.
Nakamura, A., Furuta, H., Maeda, H., Takao, T., & Nagamatsu, Y. (2002). Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Bioscience Biotechnology and Biochemistry, 66(6), 1301-1313.
Nergard, C. S., Diallo, D., Michaelsen, T. E., Malterud, K. E., Kiyohara, H., Matsumoto, T., Yamada, H., & Paulsen, B. S. (2004). Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch Bip. ex Walp. Journal of Ethnopharmacology, 91(1), 141-152.
Nergard, C. S., Matsumoto, T., Inngjerdingen, M., Inngjerdingen, K., Hokputsa, S., Harding, S. E., Michaelsen, T. E., Diallo, D., Kiyohara, H., Paulsen, B. S., & Yamada, H. (2005). Structural and immunological studies of a pectin and a pectic arabinogalactan from Vernonia kotschyana Sch Bip. ex Walp. (Asteraceae). Carbohydrate Research, 340(1), 115-130.
Nergard, C. S., Kiyohara, H., Reynolds, J. C., Thomas-Oates, J. E., Matsumoto, T., Yamada, H., Patel, T., Petersen, D., Michaelsen, T. E., Diallo, D., & Paulsen, B. S. (2006). Structures and structure-activity relationships of three mitogenic and complement fixing pectic arabinogalactans from the Malian antiulcer plants Cochlospermum tinctorium A. Rich and Vernonia kotschyana Sch Bip. ex Walp. Biomacromolecules, 7(1), 71-79.
ÓNeill, M. A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A. G., & Albersheim, P. (1996). Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester - In vitro conditions for the formation and hydrolysis of the dimer. Journal of Biological Chemistry, 271(37), 22923-22930.
Pangburn, M. K. (1989). Analysis of Recognition in the Alternative Pathway of Complement - Effect of Polysaccharide Size. Journal of Immunology, 142(8), 2766-2770.
Paulsen, B. S., & Barsett, H. (2005). Bioactive pectic polysaccharides. Polysaccharides 1: Structure, Characterization and Use pp. 69-101). Berlin: Springer-Verlag Berlin.
Peng, X. M., Huang, L. J., Qi, C. H., Zhang, Y. X., & Tian, G. Y. (2001). Studies on chemistry and immuno-modulating mechanism of a glycoconjugate from Lycium barbarum L. Chinese Journal of Chemistry, 19(12), 1190-1197.
Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena - An overview. Critical Reviews in Food Science and Nutrition, 47(1), 1-19.
Ridley, B. L., O''Neill, M. A., & Mohnen, D. A. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967.
Sakurai, M. H., Matsumoto, T., Kiyohara, H., & Yamada, H. (1996). Detection and tissue distribution of anti-ulcer pectic polysaccharides from Bupleurum falcatum by polyclonal antibody. Planta Medica, 62(4), 341-346.
Sakurai, M. H., Kiyohara, H., Matsumoto, T., Tsumuraya, Y., Hashimoto, Y., & Yamada, H. (1998). Characterization of antigenic epitopes in anti-ulcer pectic polysaccharides from Bupleurum falcatum L. using several carbohydrases. Carbohydrate Research, 311(4), 219-229.
Samuelsen, A. B., Paulsen, B. S., Wold, J. K., Otsuka, H., Yamada, H., & Espevik, T. (1995). Isolation and partial characterization of biologically-active polysaccharides from Plantago-major L. Phytotherapy Research, 9(3), 211-218.
Samuelsen, A. B., Paulsen, B. S., Wold, J. K., Otsuka, H., Kiyohara, H., Yamada, H., & Knutsen, S. H. (1996). Characterization of a biologically active pectin from Plantago major L. Carbohydrate Polymers, 30(1), 37-44.
Scheller, H. V., Jensen, J. K., Sorensen, S. O., Harholt, J., & Geshi, N. (2007). Biosynthesis of pectin. Physiologia Plantarum, 129(2), 283-295.
Schepetkin, I. A., Faulkner, C. L., Nelson-Overton, L. K., Wiley, J. A., & Quinn, M. T. (2005). Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. International Immunopharmacology, 5(13-14), 1783-1799.
Schols, H. A., Vierhuis, E., Bakx, E. J., & Voragen, A. G. J. (1995). Different Populations of Pectic Hairy Regions Occur in Apple Cell-Walls. Carbohydrate Research, 275(2), 343-360.
Shin, K. S., Kiyohara, H., Matsumoto, T., & Yamada, H. (1997). Rhamnogalacturonan II from the leaves of Panax ginseng C.A. Meyer as a macrophage Fc receptor expression-enhancing polysaccharide. Carbohydrate Research, 300(3), 239-249.
Shin, K. S., Kiyohara, H., Matsumoto, T., & Yamada, H. (1998). Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities. Carbohydrate Research, 307(1-2), 97-106.
Sonoda, Y., Kasahara, T., Mukaida, N., Shimizu, N., Tomoda, M., & Takeda, T. (1998). Stimulation of interleukin-8 production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacology, 38(3), 287-294.
Sun, X. B., Matsumoto, T., & Yamada, H. (1992). Purification of an Antiulcer Polysaccharide from the Leaves of Panax-Ginseng. Planta Medica, 58(5), 445-448.
Taguchi, I., Kiyohara, H., Matsumoto, T., & Yamada, H. (2004). Structure of oligosaccharide side chains of an intestinal immune system modulating arabinogalactan isolated from rhizomes of Atractylodes lancea DC. Carbohydrate Research, 339(4), 763-770.
Talaga, P., Vialle, S., & Moreau, M. (2002). Development of a high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugates. Vaccine, 20(19-20), 2474-2484.
Tomoda, M., Shimizu, N., Ohara, N., Gonda, R., Ishii, S., & Otsuki, H. (1992). A Reticuloendothelial System-Activating Glycan from the Roots of Astragalus-Membranaceus. Phytochemistry, 31(1), 63-66.
van Holst, G.-J., & Clarke, A. E. (1985). Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Analytical Biochemistry, 148(2), 446-450.
Wang, S. C., Shan, J. J., Wang, Z. T., & Hu, Z. B. (2006). Isolation and structural analysis of an acidic polysaccharide from Astragalus membranaceus (Fisch.) Bunge. Journal of Integrative Plant Biology, 48(11), 1379-1384.
Westereng, B., Yousif, O., Michaelsen, T. E., Knutsen, S. H., & Samuelsen, A. B. (2006). Pectin isolated from white cabbage - structure and complement-fixing activity. Molecular Nutrition & Food Research, 50(8), 746-755.
Willats, W. G. T., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47(1-2), 9-27.
Yamada, H., Kiyohara, H., Cyong, J. C., & Otsuka, Y. (1985). Characterization of an Anti-Complementary Arabinogalactan from a Chinese Herb, Angelica-Acutiloba Kitagawa. International Journal of Immunopharmacology, 7(3), 358-358.
Yamada, H., Kiyohara, H., Cyong, J. C., & Otsuka, Y. (1985). Studies on Polysaccharides from Angelica-Acutiloba .4. Characterization of an Anti-Complementary Arabinogalactan from the Roots of Angelica-Acutiloba Kitagawa. Molecular Immunology, 22(3), 295-304.
Yamada, H., Komiyama, K., Kiyohara, H., Cyong, J. C., Hirakawa, Y., & Otsuka, Y. (1990). Studies on Polysaccharides from Angelica-Acutiloba .13. Structural Characterization and Antitumor-Activity of a Pectic Polysaccharide from the Roots of Angelica-Acutiloba. Planta Medica, 56(2), 182-186.
York, W. S., Darvill, A. G., Mcneil, M., & Albersheim, P. (1985). Structure of Plant-Cell Walls .16. 3-Deoxy-D-Manno-2-Octulosonic Acid (Kdo) Is a Component of Rhamnogalacturonan-Ii, a Pectic Polysaccharide in the Primary-Cell Walls of Plants. Carbohydrate Research, 138(1), 109-126.
Yu, K. W., Kiyohara, H., Matsumoto, T., Yang, H. C., & Yamada, H. (1998). Intestinal immune system modulating polysaccharides from rhizomes of Atractylodes lancea. Planta Medica, 64(8), 714-719.
Yu, K. W., Kiyohara, H., Matsumoto, T., Yang, H. C., & Yamada, H. (2001a). Characterization of pectic polysaccharides having intestinal immune system modulating activity from rhizomes of Atractylodes lancea DC. Carbohydrate Polymers, 46(2), 125-134.
Yu, K. W., Kiyohara, H., Matsumoto, T., Yang, H. C., & Yamada, H. (2001b). Structural characterization of intestinal immune system modulating new arabino-3, 6-galactan from rhizomes of Atractylodes lancea DC. Carbohydrate Polymers, 46(2), 147-156.
Zandleven, J., Beldman, G., Bosveld, M., Schols, H. A., & Voragen, A. G. J. (2006). Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase. Carbohydrate Polymers, 65(4), 495-503.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top