跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝榕庭
研究生(外文):Jung-Ting Hsieh
論文名稱:以Gluconacetobacter xylinus生產細菌纖維素之研究
論文名稱(外文):Bacterial Cellulose Production by Gluconacetobacter xylinus
指導教授:劉懷勝劉懷勝引用關係
指導教授(外文):Hwai-Shen Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:175
中文關鍵詞:細菌纖維素
外文關鍵詞:Bacterial cellulose
相關次數:
  • 被引用被引用:4
  • 點閱點閱:3084
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
細菌纖維素是由特殊的菌株所分泌的一種胞外不可溶性多醣類,因為其超微細網狀結構及其它特性,在工業的應用上具有相當大的前景,如造紙紡織、食品工業以及生醫材料等。本研究主要探討不同的環境因子以及改變培養基配方對於Gluconacetobacter xylinus生成纖維素產量的影響。
因為纖維素的型態會隨著培養方式以及培養基的配方而有所差異,且若未先有效的去除內部的雜質,對於纖維素產量的估算會造成很大的影響。本研究建議應先經由剪碎的程序,再經過0.5N NaOH熱鹼處理30分鐘後,藉此將包含在纖維素團塊內部的不純物質移除而得到較為合理且穩定的纖維素乾重。
本研究以BSH Medium作為培養基(初始pH值調整至5.5),在26℃下以迴旋式(100rpm)進行7天培養所得的纖維素產量作為對照組(2.5g/L),分別探討不同的環境因子對於纖維素產量的影響。由實驗結果可以發現,當初始pH值設定在6.0~7.0之間進行培養,則會有較高的纖維素產量(3.5g/L)。而改用往復式培養(100rpm)或是靜置培養的組別所得的纖維素產量較低,所生成的纖維素型態也大不相同,因此之後的實驗條件皆選擇迴旋式(100rpm)進行培養。
另一方面,藉由改變培養基中碳、氮源的種類以及濃度,可以有效的提高纖維素的產量。在碳源的選擇上,分別利用2%的蔗糖、葡萄糖、果糖、甘露醇作為單一碳源時皆可得到1.5g/L以上的產量,其中以蔗糖作為碳源時有最高的纖維素產量(3.53g/L)。此外,提高葡萄糖的濃度,纖維素的產量也會隨之提升,當葡萄糖的濃為80g/L時,纖維素產量可以達到5.0g/L。而在氮源的選擇上,測試了酵母萃取物、蛋白腖、玉米浸漬液作為調控的主要氮源。其中添加60g/L的玉米浸漬液的組別有最高的纖維素產量(13.56g/L)。同時添加其他的生長因子,如乙醇、有機酸等皆有助於纖維素產量的提升,其中額外添加5g/L的延胡索酸於培養基當中,亦可以有效提升纖維素的產量(7.0g/L)。

Bacterial cellulose (BC) is a kind of insoluble extracellular polysaccharide produced by Gluconacetobacter strains. Because of the unique properties, mainly the ultrafine reticulated structure, BC has found various applications in paper, textile, and food industries, and as a biomaterial in cosmetics and medicine. In this study, we investigated different cultural methods/conditions and medium composition to understand their influence on the BC production with Gluconacetobacter xylinus.
We found that the morphology of BC depends on the cultural methods and composition, and significant amount of medium might be entrapped inside the BC. If we do not remove that out of BC, the BC yield might be overestimated. Therefore, we suggest BC be cut into pieces to release the medium before treating with 0.5N NaOH at 90℃ for 30mins to release the rest of impurities.
When using BSH Medium (initial pH: 5.5) at 26°C under orbital shaking (100rpm), BC yield was 2.5g/L after 7 days cultivation. Therefore, we set it as a control group to discuss the effect of different environmental factors on the BC production. We tested BC yield for the initial pH ranging from 3.5 to 7.0, and found a maximum between pH 6.0 and 7.0 (3.5g/L). Besides, BC yield under orbital shaking (100rpm) is the highest compared with static cultivation and reciprocal shaking (100rpm).
To investigate the effect of carbon sources on the production of BC, various carbon sources were investigated at 2%(w/v). Good BC production was obtained when sucrose, glucose, fructose, or mannitol was used as the sole carbon source, and the highest yield was obtained with the sucrose (3.53g/L). Furthermore, BC yield would become higher with increasing glucose concentration, and the highest yield occurred at 8.0% (5.0g/L).
On the other hand, various nitrogen sources such as yeast extract, peptone, and corn steep liquor (CSL) were tested to assess their effects on BC production, and the highest cellulose yield was obtained for the case of 6.0% corn steep liquor (13.56 g/L), which was about four times higher than in BSH Medium.
Besides, other growth factors, such as ethanol, organic acid, and gluconic acid were also found to stimulate the BC production. For example, with 0.5% fumaric acid addition, the BC yield could increase from 2.5g/L to 7.0g/L.


口試委員會審定書........................................................................................................... I
誌謝.................................................................................................................................II
摘要............................................................................................................................... III
ABSTRACT .................................................................................................................. IV
目錄............................................................................................................................... VI
表目錄..........................................................................................................................VIII
圖目錄..............................................................................................................................X
第一章緒論 .................................................................................................................... 1
第二章文獻回顧............................................................................................................ 3
2.1 細菌纖維素的介紹........................................................................................... 3
2.1.1 細菌纖維素的基本構造........................................................................ 3
2.1.2 細菌纖維素的理化性質........................................................................ 5
2.1.3 細菌纖維素的特性................................................................................ 7
2.1.4 細菌纖維素的應用.............................................................................. 12
2.2 細菌纖維素的生產菌株................................................................................. 16
2.2.1 Acetobacter xylinum的生理特性......................................................... 16
2.2.2 細菌纖維素的合成途徑...................................................................... 17
2.2.3 細菌纖維素合成酶的調控機制.......................................................... 26
2.2.4 影響細菌纖維素生成的因素.............................................................. 29
第三章實驗流程、方法、藥品及儀器...................................................................... 49
3.1 實驗菌株......................................................................................................... 49
3.2 培養基組成..................................................................................................... 50
3.3 實驗方法......................................................................................................... 52
3.3.1 預培養.................................................................................................. 52
3.3.2 主培養.................................................................................................. 53
3.3.3 產物處理以及秤重.............................................................................. 53
3.3.4 以DNS試劑測還原醣濃度.................................................................. 54
3.3.5 纖維素產量計算公式.......................................................................... 56
3.4 實驗藥品......................................................................................................... 57
3.5 實驗儀器......................................................................................................... 58
第四章實驗結果與討論.............................................................................................. 59
4.1 前處理對於Gluconacetobacter xylinus生成細菌纖維素產量量測的影響. 60
4.1.1 不同前處理對於不同型態的纖維素產量量測的影響...................... 60
4.1.2 不同前處理對於不同基質配方造成纖維素產量量測的影響.......... 72
4.2 不同環境因子及物理因子對Gluconacetobacter xylinus生成細菌纖維素產量的影響................................................................................................................ 84
VII
4.2.1 比較靜置與搖晃培養對細菌纖維素產量的影響.............................. 84
4.2.2 比較不同溫度對細菌纖維素產量的影響.......................................... 91
4.2.3 比較不同初始pH值對細菌纖維素產量的影響................................. 94
4.2.4 比較不同體積對應不同容器對細菌纖維素產量的影響.................. 99
4.3 不同碳源對Gluconacetobacter xylinus生成細菌纖維素產量的影響........111
4.3.1 比較添加不同濃度的葡萄糖對細菌纖維素產量的影響.................111
4.3.2 比較添加不同單一碳源對細菌纖維素產量的影響.........................115
4.3.3 比較添加不同雙碳源對細菌纖維素產量的影響............................ 121
4.4 不同氮源對Gluconacetobacter xylinus生成細菌纖維素產量的影響....... 124
4.4.1 比較添加不同濃度的酵母萃取物對細菌纖維素產量的影響........ 125
4.4.2 比較添加不同濃度的蛋白腖對細菌纖維素產量的影響................ 134
4.4.3 比較添加不同濃度的玉米浸漬液對細菌纖維素產量的影響........ 141
4.5 額外添加其它的營養成分對Gluconacetobacter xylinus生成細菌纖維素產量的影響.............................................................................................................. 148
4.5.1 比較添加不同濃度的乙醇對細菌纖維素產量的影響.................... 148
4.5.2 比較添加不同有機酸對細菌纖維素產量的影響............................ 154
4.5.3 比較添加葡萄糖酸及其鹽類對細菌纖維素產量的影響................ 159
第五章結論 ................................................................................................................ 164
參考文獻...................................................................................................................... 168
附錄.............................................................................................................................. 174

Atalla, R. H. and Vanderhart, D. L. (1984). "Native cellulose: a composite of two distinct crystalline forms." Science
Bae, S., Sugano, Y. and Shoda, M. (2004). "Improvement of bacterial cellulose production by addition of agar in a jar fermentor." 223(4633): 283-285.
The Society for Biotechnology
Bae, S. O. and Shoda, M. (2005). "Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor." 97(1): 33-38.
Applied Microbiology and Biotechnology
Benziman, M. and Burger-Rachamimov, H. (1962). "Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum." 67(1): 45-51.
Journal of Bacteriology
Brown, J. R. M. and Saxena, I. M. (2000). "Cellulose biosynthesis: a model for understanding the assembly of biopolymers." 84(4): 625-630.
Plant Physiology and Biochemistry
Brown, R. M., Willison, J. H. and Richardson, C. L. (1976). "Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process." 38(1-2): 57-67.
Proceedings of the National Academy of Sciences of the United States of America
Budhiono, A., Rosidi, B., Taher, H. and Iguchi, M. (1999). "Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system." 73(12): 4565-4569.
Carbohydrate Polymers
Cannon, R. E. and Anderson, S. M. (1991). "Biogenesis of bacterial cellulose." 40(2): 137-143.
Critical Reviews in Microbiology
Chao, Y., Sugano, Y. and Shoda, M. (2001). "Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor." 17(6): 435 - 447.
Applied Microbiology and Biotechnology
Chen, H. P. and Brown, R. M. (1999). "Thermal stability of the cellulose synthase complex of Acetobacter xylinum." 55(6): 673-679.
Cellulose
Dudman, W. F. (1959). "Cellulose production by Acetobacter acetigenum and other 6(2): 137-152.
169
Acetobacter spp." Journal of General Microbiology
Dudman, W. F. (1959). "Cellulose production by Acetobacter actigenum in defined medium." 21: 312-326.
Journal of General Microbiology
Embuscado, M. E., Marks, J. S. and BeMiller, J. M. (1994). "Bacterial cellulose. 2. optimization of cellulose production by Acetobacter xylinum through response surface methodology " 21: 327-337.
Food hydrocolloids
Fontana, J., De Souza, A., Fontana, C., Torriani, I., Moreschi, J., Gallotti, B., De Souza, S., Narcisco, G., Bichara, J. and Farah, L. (1990). "Acetobacter cellulose pellicle as a temporary skin substitute." 8(5): 419-430.
Applied Biochemistry and Biotechnology
Forge, A. (1977). "Electron microscopy of a non-pellicle-forming strain of Acetobacter xylinum." 24-25(1): 253-264.
Annals of Botany
Gisela, H., Henrik, B., Aase, B., Nannmark, U., Gatenholm, P. and Risberg, B. (2006). "In vivo biocompatibility of bacterial cellulose." 41(2): 455-460.
Journal of Biomedical Materials Research Part A
Gromet, Z., Schramm, H. and Hestrin, S. (1957). "Synthesis of cellulose by Acetobacter xylinum. 4. Enzyme systems present in a crude extract of glucose-grown cells." 76A(2): 431-438.
Biochemical Journal
Han, N. S. and Robyt, J. F. (1998). "The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane." 67(4): 679-689.
Carbohydrate Research
Heo, M. (2002). "Development of an optimized, simple chemically defined medium for bacterial cellulose production by Acetobacter sp. A9 in shaking cultures." 313(2): 125-133.
Biotechnology and Applied Biochemistry
Hestrin, S. and Schramm, M. (1954). "Synthesis of cellulose by Acetobacter xylinum. 2. preparation of freeze-dried cells capable of polymerizing glucose to cellulose." 36: 41-45.
Biochemical Journal
Hiroshi, T., Takaaki, N., Akira, S., Masanobu, M., Takayasu, T. and Fumihiro, Y. (1995). "Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture." 58(2): 345-352.
Bioscience, biotechnology, and biochemistry
Iguchi, M., Yamanaka, S. and Budhiono, A. (2000). "Bacterial cellulose—a masterpiece of nature''s arts." 59(8): 1498-1502.
Journal of Materials Science
Jonas, R. and Farah, L. F. (1998). "Production and application of microbial cellulose." 35(2): 261-270.
Polymer Degradation and Stability
Kamide, K., Matsuda, Y., Iijima, H. and Okajima, K. (1990). "Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis." 59(1-3): 101-106.
British Polymer Journal 22(2): 167-171.
Atalla, R. H. and Vanderhart, D. L. (1984). "Native cellulose: a composite of two distinct crystalline forms." Science
Bae, S., Sugano, Y. and Shoda, M. (2004). "Improvement of bacterial cellulose production by addition of agar in a jar fermentor." 223(4633): 283-285.
The Society for Biotechnology
Bae, S. O. and Shoda, M. (2005). "Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor." 97(1): 33-38.
Applied Microbiology and Biotechnology
Benziman, M. and Burger-Rachamimov, H. (1962). "Synthesis of cellulose from pyruvate by succinate-grown cells of Acetobacter xylinum." 67(1): 45-51.
Journal of Bacteriology
Brown, J. R. M. and Saxena, I. M. (2000). "Cellulose biosynthesis: a model for understanding the assembly of biopolymers." 84(4): 625-630.
Plant Physiology and Biochemistry
Brown, R. M., Willison, J. H. and Richardson, C. L. (1976). "Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process." 38(1-2): 57-67.
Proceedings of the National Academy of Sciences of the United States of America
Budhiono, A., Rosidi, B., Taher, H. and Iguchi, M. (1999). "Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system." 73(12): 4565-4569.
Carbohydrate Polymers
Cannon, R. E. and Anderson, S. M. (1991). "Biogenesis of bacterial cellulose." 40(2): 137-143.
Critical Reviews in Microbiology
Chao, Y., Sugano, Y. and Shoda, M. (2001). "Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor." 17(6): 435 - 447.
Applied Microbiology and Biotechnology
Chen, H. P. and Brown, R. M. (1999). "Thermal stability of the cellulose synthase complex of Acetobacter xylinum." 55(6): 673-679.
Cellulose
Dudman, W. F. (1959). "Cellulose production by Acetobacter acetigenum and other 6(2): 137-152.
169
Acetobacter spp." Journal of General Microbiology
Dudman, W. F. (1959). "Cellulose production by Acetobacter actigenum in defined medium." 21: 312-326.
Journal of General Microbiology
Embuscado, M. E., Marks, J. S. and BeMiller, J. M. (1994). "Bacterial cellulose. 2. optimization of cellulose production by Acetobacter xylinum through response surface methodology " 21: 327-337.
Food hydrocolloids
Fontana, J., De Souza, A., Fontana, C., Torriani, I., Moreschi, J., Gallotti, B., De Souza, S., Narcisco, G., Bichara, J. and Farah, L. (1990). "Acetobacter cellulose pellicle as a temporary skin substitute." 8(5): 419-430.
Applied Biochemistry and Biotechnology
Forge, A. (1977). "Electron microscopy of a non-pellicle-forming strain of Acetobacter xylinum." 24-25(1): 253-264.
Annals of Botany
Gisela, H., Henrik, B., Aase, B., Nannmark, U., Gatenholm, P. and Risberg, B. (2006). "In vivo biocompatibility of bacterial cellulose." 41(2): 455-460.
Journal of Biomedical Materials Research Part A
Gromet, Z., Schramm, H. and Hestrin, S. (1957). "Synthesis of cellulose by Acetobacter xylinum. 4. Enzyme systems present in a crude extract of glucose-grown cells." 76A(2): 431-438.
Biochemical Journal
Han, N. S. and Robyt, J. F. (1998). "The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane." 67(4): 679-689.
Carbohydrate Research
Heo, M. (2002). "Development of an optimized, simple chemically defined medium for bacterial cellulose production by Acetobacter sp. A9 in shaking cultures." 313(2): 125-133.
Biotechnology and Applied Biochemistry
Hestrin, S. and Schramm, M. (1954). "Synthesis of cellulose by Acetobacter xylinum. 2. preparation of freeze-dried cells capable of polymerizing glucose to cellulose." 36: 41-45.
Biochemical Journal
Hiroshi, T., Takaaki, N., Akira, S., Masanobu, M., Takayasu, T. and Fumihiro, Y. (1995). "Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture." 58(2): 345-352.
Bioscience, biotechnology, and biochemistry
Iguchi, M., Yamanaka, S. and Budhiono, A. (2000). "Bacterial cellulose—a masterpiece of nature''s arts." 59(8): 1498-1502.
Journal of Materials Science
Jonas, R. and Farah, L. F. (1998). "Production and application of microbial cellulose." 35(2): 261-270.
Polymer Degradation and Stability
Kamide, K., Matsuda, Y., Iijima, H. and Okajima, K. (1990). "Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis." 59(1-3): 101-106.
British Polymer Journal 22(2): 167-171.
Klemm, D., Schumann, D., Udhardt, U. and Marsch, S. (2001). "Bacterial synthesized cellulose -- artificial blood vessels for microsurgery." Progress in Polymer Science
Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M. and Bielecki, S. (2002). "Factors affecting the yield and properties of bacterial cellulose." 26(9): 1561-1603.
Journal of Industrial Microbiology and Biotechnology
Liggett, R. W. and Koffler, H. (1948). "Corn steep liquor in microbiology." 29(4): 189-195.
Microbiology and Molecular Biology Reviews
Lin, F. C., Brown, R. M., Jr., Drake, R. R., Jr. and Haley, B. E. (1990). "Identification of the uridine 5''-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc." 12(4): 297-311.
Journal of Biological Chemistry
Masaoka, S., Ohe, T. and Sakota, N. (1993). "Production of cellulose from glucose by Acetobacter xylinum." 265(9): 4782-4784.
Journal of Fermentation and Bioengineering
Matsuoka, M. (1996). "A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans." 75(1).
Bioscience, Biotechnology, and Biochemistry
Morton, A. G. and Macmillan, A. (1954). "The assimilation of nitrogen from ammonium salts and nitrate by Fungi." 60(4): 575-579.
Journal of Experimental Botany
Moyer, A. J. and Coghill, R. D. (1946). "Penicillin: VIII. production of penicillin in surface cultures." 5(2): 232-252.
Journal of bacteriology
Naritomi, T., Kouda, T., Yano, H. and Yoshinaga, F. (1998). "Effect of ethanol on bacterial cellulose production from fructose in continuous culture." 51(1): 57-78.
Journal of Fermentation and Bioengineering
Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M. and Mitsuhashi, S. (1990). "The structure and mechanical properties of sheets prepared from bacterial cellulose." 85(6): 598-603.
Journal of Materials Science
Noro, N., Sugano, Y. and Shoda, M. (2004). "Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum." 25(6): 2997-3001.
Applied Microbiology and Biotechnology
Oikawa, T., Morino, T. and Ameyama, M. (1995). "Production of cellulose from D-arabitol by Acetobacter xylinum KU-1." 64(2): 199-205.
Bioscience, Biotechnology, and Biochemistry
Okiyama, A., Motoki, S. and Yamanaka, S. (1993). "Bacterial cellulose. IV: application to processed foods." 59(8): 1564-1565.
Food hydrocolloids
Park, C. and Lee, S. (1998). "Ammonia production from yeast extract and its effect on 6(6): 503-511.
Park, C. and Lee, S. (1998). "Ammonia production from yeast extract and its effect on 6(6): 503-511.
171
growth of the hyperthermophilic archaeon Sulfolobus solfataricus." Biotechnology and bioprocess engineering
Ramana, K. V., Tomar, A. and Singh, L. (2000). "Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum." 3(2): 115-118.
World Journal of Microbiology and Biotechnology
Ross, P., Mayer, R. and Benziman, M. (1991). "Cellulose biosynthesis and function in bacteria." 16(3): 245-248.
Microbiology and Molecular Biology Reviews
Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G. A., van Boom, J. H. and Benziman, M. (1987). "Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid." 55(1): 35-58.
Nature
Sherif, M. A., Keshk, S. and Sameshima, K. (2005). "Evaluation of different carbon sources for bacterial cellulose production." 325(6101): 279-281.
African Journal of Biotechnology
Shoda, M. and Sugano, Y. (2005). "Recent advances in bacetrial cellulose production." 4(6): 478-482.
Biotechnology and Bioprocess Engineering
Son, H. J., Heo, M. S., Kim, Y. G. and Lee, S. J. (2001). "Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures." 10: 1-8.
Biotechnology and Applied Biochemistry
Son, H. J., Kim, H. G., Kim, K. K., Kim, H. S., Kim, Y. G. and Lee, S. J. (2003). "Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions." 33(Pt 1): 1-5.
Bioresource Technology
Steinbuchel, A. and Rhee, S. K. (2005). 86(3): 215-219.
Polysaccharides and polyamides in the food industry
Sugiyama, J., Persson, J. and Chanzy, H. (1991). "Combined infrared and electron diffraction study of the polymorphism of native celluloses." . Korea, Wiley-vch.
Macromolecules
Sutherland, I. W. (1998). "Novel and established applications of microbial polysaccharides." 24(9): 2461-2466.
Trends in Biotechnology
Takai, M., Tsuta, Y., Hayashi, J. and Watanabe, S. (1975). "Biosynthesis of cellulose by Acetobacter Xylinum. III. X-ray studies of preferential orientation of the crystallites in a bacterial cellulose membrane." 16(1): 41-46.
Polymer Journal
Thomas, K. C., Hynes, S. H. and Ingledew, W. M. (2002). "Influence of medium buffering capacity on inhibition of saccharomyces cerevisiae growth by acetic and lactic acids." 7(2): 157-164.
Applied and Environmental Microbiology
Valla, S., Coucheron, D. H., Fjærvik, E., Kjosbakken, J., Weinhouse, M., Ross, P.,Amikam, D. and Benziman, M. (1989). "Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene." Molecular and General Genetics
Vandamme, E. J., De Baets, S., Vanbaelen, A., Joris, K. and De Wulf, P. (1998). "Improved production of bacterial cellulose and its application potential." 217(1): 26.
Polymer Degradation and Stability
Watanabe, K., Tabuchi, M., Ishikawa, A., Takemura, H., Tsuchida, T., Morinaga, Y. and Yoshinaga, F. (1998). "Acetobacter xylinum mutant with high cellulose productivity and an ordered structure." 59(1-3): 93-99.
Bioscience, Biotechnology, and Biochemistry
Watanabe, K., Tabuchi, M., Morinaga, Y. and Yoshinaga, F. (1998). "Structural features and properties of bacterial cellulose produced in agitated culture." 62(7): 1290-1292.
Cellulose
Weinhouse, H. and Benziman, M. (1974). "Regulation of hexose phosphate metabolism in Acetobacter xylinum." 5(3): 187-200.
Biochem. J.
Weinhouse, H. and Benziman, M. (1976). "Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role." 138(3): 537-542.
J. Bacteriol.
White, G. A. and Wang, C. H. (1964). "The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate." 127(2): 747-754.
Biochemical Journal
Williams, W. S. and Cannon, R. E. (1989). "Alternative environmental roles for cellulose produced by Acetobacter xylinum." 90(2): 408-423.
Applied and Environmental Microbiology
Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H. and Emerick, A. W. (1990). "Genetic organization of the cellulose synthase operon in Acetobacter xylinum." 55(10): 2448-2452.
Proceedings of the National Academy of Sciences of the United States of America
Yamada, Y. (1996). "Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 57." 87(20): 8130-8134.
International Journal of Systematic Bacteriology
Yamada, Y. (2000). "Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov." 46(2): 625-626.
International Journal of Systematic and Evolutionary Microbiology 50(6): 2225-2227.
Yamamoto, H. and Horii, F. (1993). "CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures." Macromolecules
Yamanaka, S. and Sugiyama, J. (2000). "Structural modification of bacterial cellulose." 26(6): 1313-1317.
Cellulose
Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y. and Uryu, M. (1989). "The structure and mechanical properties of sheets prepared from bacterial cellulose." 7(3): 213-225.
Journal of Materials Science
Yang, Y. K., Park, S. H., Hwang, J. W., Pyun, Y. R. and Kim, Y. S. (1998). "Cellulose production by Acetobacter xylinum BRC5 under agitated condition." 24(9): 3141-3145.
Journal of Fermentation and Bioengineering
Zaar, K. (1979). "Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum." 85(3): 312-317.
The Journal of Cell Biology
Zhou, L., Sun, D., Hu, L., Li, Y. and Yang, J. (2007). "Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum." 80(3): 773-777.
Journal of Industrial Microbiology and Biotechnology
何佳倫(1996). 以醋酸菌發酵柑桔果汁生產細菌纖維素之研究. 34(7): 483-489.
國立台灣大學園藝學研究所
李瑞吉(1995). 利用醋酸菌(Acetobacter xylinum)發酵鳳梨皮汁生產細菌纖維素之研究. , 台灣大學. 碩士.
東海大學食品科學系
胡家錚(1998). 高梁酒糟基質組成及培養條件對木質醋酸菌(Acetobacter xylium)生產細菌纖維素之影響. , 東海大學. 碩士.
東海大學食品科學系
黃俊智(2003). 利用醋酸菌Acetobacter xylinum發酵米酒糟生產細菌纖維素之研究. , 東海大學. 碩士.
東海大學食品科學系
蕭淑娟(2003). 利用醋酸菌Acetobacter xylinum發酵燒酒糟生產細菌纖維素之研究. , 東海大學. 碩士.
東海大學食品科學系
戴三堡(1996). 醋酸菌發酵椰汁生成細菌纖維素之質地分析. , 東海大學. 碩士.
國立台灣大學園藝研究所, 台灣大學. 碩士.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top