|
1990年在Conway and Sloane[5]的論文中,對於單偶極端自對偶[54, 27, 10]碼,其可能之權計算式(weight enumerator)分別為: W54,1 = 1+(351−8β)y10+(5,031+24β)y12+(48,492+32β)y14+……, where 0≦β≦43. W54,2 = 1+(351−8β)y10+(5,543+24β)y12+(43,884+32β)y14+……, where 12≦β≦43. 其中β為一個未定的參數。 現在我們建構了一個對應於W54,1,β =16與一個對應於W54,2,β =21的不等價之極端自對偶[54, 27, 10]碼。
1990年在Conway and Sloane[5]的論文中,對於單偶極端自對偶[64, 32, 12]碼,其可能之權計算式分別為: W64,1 = 1+(1,312+16β)y12+(22,016−64β)y14+(239,148−32β)y16+……, where 14≦β≦284. W64,2 = 1+(1,312+16β)y12+(23,040−64β)y14+(228,908−32β)y16+……, where 0≦β≦277. 其中β為一個未定的參數。 現在我們建構了一個對應於W64,2,β =15的新極端自對偶[64, 32, 12]碼。
1997年在Dougherty, Gulliver, and Harada[6]的論文中,對於單偶極端自對偶[66, 33, 12]碼,其可能之權計算式分別為: W66,1 = 1+1,690y12+7,990y14+302,705y16+ 867,035y18+ …… , W66,2 = 1+(858+8β)y12+(18,678−24β)y14+(201,201−48β)y16+…… , where 0≦β≦778. W66,3 = 1+(858+8β)y12+(18,166−24β)y14+(205,809−48β)y16+…… , where 14≦β≦756. 其中β為一個未定的參數。 現在我們建構了九個對應於W66,2,β =12, 21, 25, 28, 30, 34, 39, 58, 184與廿二個對應於W66,3,β = 25, 29, 49, 50, 51, 53, 54, 56, 57, 59, 61, 68, 70, 72, 74, 76, 78, 80, 82, 98, 106, 112的新極端自對偶[66, 33, 12]碼。
1998年在Buyuklieva and Boukliev[2]的論文中,對於單偶極端自對偶[68, 34, 12]碼,其可能之權計算式分別為: W68,1 = 1+(442+4β)y12+(10,864−8β)y14+(223,623−36β)y16+…… , where 104≦β≦1358. W68,2 = 1+(442+4β)y12+(14,960−8β−256γ)y14+……, where 0≦γ≦11 and 14γ≦β≦1870−32γ. 其中β、γ為一個未定的參數。 現在我們建構了兩個對應於W68,1,β =117, 120與四百九十九個對應於W68,2, γ=0,β =33, 37,…, 44, 46, 66, 116,…, 135, 137,…, 169, 171,…, 203, 205,…, 237, 239,…, 262, 264,…, 270, 273, 274, 276, 278, 282, 288, 290; γ=1,β =49, 52,…, 60, 62, 66,…, 69, 116,…, 211, 213, 216; γ=2,β =61, 69, 116,…, 215, 219, 220, 222, 224, 225, 230; γ=3,β =85, 91,…, 122, 124, 126,…, 137, 139,…, 175, 177, 178, 180, 182, 184, 186, 188, 189, 191, 192, 194, 196, 203, 207, 218, 231; γ=4,β =111, 112, 114, 116, 128, 139, 158, 184, 188, 195, 203的新極端自對偶[68, 34, 12]碼。
|
|
[1]S. Bouyuklieva and P. Östergård, New constructions of optimal self-dual binary codes of length 54, Designs, Codes and Cryptography, vol.41, pp.101-109, 2006. [2]S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory, vol.44, pp.323-328, 1998. [3]Chien-Hung, Chen, Construction of self-dual codes, Master thesis, Soochow University, 2003. [4]N. Chigira, M. Harada, and M. Kitazume, Extremal Self-Dual Codes of Length 64 through Neighbors and Covering Radii, Designs, Codes and Cryptography, vol.42, pp.93-101, 2007. [5]J. H. Conway and N. J. A Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, vol.36, no.6, pp.1319-1333, Nov. 1990. [6]S.T. Dougherty, T.A Gulliver, and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, vol.43, pp.2036-2047, 1997. [7]S.T. Dougherty, M. Harada, New extremal self-dual codes of length 68, IEEE Trans. Inform. Theory, vol.45, pp.2133-2136, 1999. [8]Chung-Ling Fan, Self-Dual Codes of Lengths 64 and 66, Master thesis, Soochow University, 2008. [9]T.A. Gulliver, M. Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Designs, Codes and Cryptography, vol.13, pp.257-269, 1998. [10]T.A. Gulliver, M. Harada, J.-L. Kim, Construction of some extremal self-dual codes, Discrete Math. 263, pp.81-91, 2003. [11]M. Harada, Construction of an extremal self-dual code of length 62, IEEE Trans. Inform. Theory, vol.45, pp.1232-1233, 1999. [12]M. Harada, T. Nishimura, and R. Yorgova, New extremal self-dual codes of length 66, Mathematica Balkanica, vol.21, pp.113-121, 2007. [13]Hao-Chung Hsu, Extremal Self-Dual Codes Of Length 68, Master thesis, Soochow University, 2003. [14]W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11(3), pp.451-490, 2005. [15]J.L. Kim, New extremal self-dual codes of lengths 36,38,and 58, IEEE Trans.Inform.Theory, vol.47, no.1, pp.386-393, Jan., 2001. [16]Chuan-Chin Li, Self-Dual Codes, Master thesis, Soochow University, 2005. [17]Jie-Syun Li, Construction Theorems of Self-Dual Codes, Master thesis, Soochow University, 2010. [18]Ming-Ze Lu, Self-Dual Codes of Length 64, Master thesis, Soochow University, 2006. [19]S. Karadeniz and B. Yildiz, Double Circulant and bordered double circulant constructions for self-dual codes over R2, Advances in Mathematics of Communications, vol.6, no.2, pp.193-202, 2012. [20]Pei-Yu Shih, Extremal self-dual codes of length 60, Master thesis, Soochow University, 2002. [21]Wen-Ku Su, Construct Extremal Self-Dual Codes From Non-Extremal Self-Dual Codes, Master thesis, Soochow University, 2005. [22]H. P. Tsai, Existence of certain extremal self-dual codes, Ph.D. dissertation, University of Illinois at Chicago, 1992. [23]H.P. Tsai, Extremal self-dual codes of length 66 and 68, IEEE Trans. Inform. Theory, vol.45, pp.2129-2133, Sep.1999. [24]H. P. Tsai, P. Y. Shih, R. Y. Wu, W. K. Su, and C. H. Chen, Construction of self-dual codes, IEEE Trans. Inform. Theory, vol.54, no.8, Aug. 2008. [25]Mei-Yun Wang, Inequivalent Codes Of Self-Dual Codes, Master thesis, Soochow University, 2003. [26]N. Yankov and R. Russeva, Binary Self-Dual Codes of Lengths 52 to 60 With an Automorphism of Order 7 or 13, IEEE Trans. Inform. Theory, vol.57, no.11, Nov. 2011.
|
| |