跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱志斌
研究生(外文):Chih-Pin Chiu
論文名稱:合成氣與烷類預混衝擊火焰之流場與燃燒特性研究
論文名稱(外文):Characteristics of Reacting-Flow and Combustion of Syngas/alkane Premixed Impinging Flame
指導教授:楊鏡堂楊鏡堂引用關係
口試委員:楊瑞珍黃榮芳趙怡欽王安邦馬萬鈞潘國隆閻順昌
口試日期:2018-01-25
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:153
中文關鍵詞:合成氣衝擊燃燒器粒子影像測速法化學螢光混合機制反應強度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
合成氣是再生且潔淨之替代能源,於燃燒工程應用中極具發展潛力;衝擊燃燒器可利用簡單的幾何結構,達到增強流場質量、動量和熱量傳遞的效果。本研究使用衝擊型流場進行合成氣與烷類燃料混燒之研究,透過融合合成氣與衝擊燃燒器兩者之優點,提出一潔淨、高效且低碳足跡的燃燒概念,也藉由燃燒流場診斷和火焰自由基螢光分布,探討合成氣混燒衝擊火焰之結構與流場。實驗分析包含火焰型態觀測、粒子影像測速法、化學螢光擷取、溫度與廢氣排放量測,並搭配火焰傳播速度計算與質傳效應分析,歸納不同氫氣/一氧化碳(H2/CO)比例與不同流速比(UC/UF),對合成氣混燒衝擊火焰混合機制與燃燒性能之影響。
本文首先探討C3H8/H2/air和C3H8/CO/air於V型衝擊燃燒器之混燒火焰,建立後續合成氣混燒火焰研究的基礎。實驗結果顯示,氫氣與一氧化碳加入丙烷衝擊火焰皆能使火焰傳播速度提升,拓展貧油操作極限,其中一氧化碳比例超過82.9%時,火焰傳播速度轉變為下降趨勢。火焰面的反應強度隨著氫氣比例增加而提高,焰尖強度則呈相反趨勢,顯示氫氣比例增加可增強火焰面反應區的質傳效應,因此火焰面溫度隨之升高,但焰尖溫度降低。另一方面,添加過多的一氧化碳導致質傳效應減弱,造成火焰傳播速度下降並抑制火焰面反應強度;然而,透過V型衝擊燃燒器的迴流減速區,可有效增進燃氣預熱與延長滯留時間,有利於具三鍵結構之一氧化碳於衝擊區進行二次反應,因此衝擊區內的反應強度隨著一氧化碳比例增加而提升,且一氧化碳排放濃度下降。為了探討合成氣預混衝擊火焰特性,本研究進一步以甲烷/合成氣混合物為燃料於多向衝擊燃燒器中實施混燒。
研究結果顯示,H2/CO比例是影響火焰穩定性、燃氣混合與燃燒效能的關鍵因素。CH4/syngas/air預混衝擊火焰中氫氣含量增加具有提升火焰傳播速度的效果,火焰面沿火焰傳播速度方向的拉伸增強,有助於預混火焰面抵抗燃氣流速,因此穩定性提高。由於兩股燃氣噴流相互撞擊產生減速區,流場紊流強度增強,促進燃氣混合效率。一氧化碳比例提高時,不僅擴大減速區範圍且渦度場結構更完整,顯示燃氣混合效率隨一氧化碳含量增加而提升,反應強度因此增強。由Lewis number觀點而言,H2/CO富油火焰的Le > 1,且Le隨著氫氣比例增加而更大,質傳效應降低導致燃氣處於非均於擴散狀態。因此,反應強度隨著一氧化碳比例增加或氫氣比例降低而增強,且火焰中心軸溫度隨著一氧化碳含量增加而上升。此外,當一氧化碳比例增加4倍時,CH4/syngas/air預混衝擊火焰之一氧化碳排放濃度僅上升12%,顯示透過衝擊流場的設計有助於一氧化碳參與反應,燃料反應率大幅提升。證實具有噴流衝擊設置的燃燒器,可有效地促進燃料內的一氧化碳參與反應。
最後,透過注入中心空氣噴流探討主動輸入氧化劑對燃燒性能之增益效果。研究結果指出,在當量比超過1.6且UC/UF < 1時,燃料不僅在火焰上游處提早進行反應,且生成更多的OH推動一氧化碳反應式,燃燒反應強度大幅提升且火焰長度明顯縮短。相較於未添加中心空氣噴流之衝擊火焰,當UC/UF = 1.0時,高-一氧化碳比例之火焰高溫區域擴大,最高溫度上升約150 °C,一氧化碳排放濃度大幅降低。反之,當UC/UF > 1.5時,燃氣與中心空氣噴流交界面處的未然氣體被加速帶往下游逸散,造成燃料反應強度下降,一氧化碳排放濃度急遽上升。在當量比較小的情況下(1.4和1.6),因空氣噴流的加入對交界面處的燃料可燃濃度產生稀釋效應,導致反應強度減弱,一氧化碳排放濃度亦呈現上升的趨勢。本研究提出結合生質合成氣與衝擊燃燒器二者之優點,利用衝擊型流場探討合成氣與烷類混燒火焰特性,說明合成氣混燒火焰於衝擊型燃燒器之燃氣混合機制,並證實本概念可有效促進合成氣中的一氧化碳進行反應,提升整體燃料的燃燒性能,研究結果可作為拓展合成氣應用範圍與其燃燒載具設計之參考,進而達到潔淨燃燒之目標。
Abstract
Syngas, a clean and alternative fuel, has a great potential to replace hydrocarbon fuels in combustion applications. An impinging flow field has attracted interest in the investigation of its mixing characteristics of fuel and oxidant in many fuel-injection systems, but up to now the research on jet-impinging flames has been focused mainly on diffusion flames with hydrocarbon fuels. For a practical application, we therefore propose a concept of clean combustion through combining the advantages of syngas and an impinging burner. Furthermore, the varied proportions of H2 and CO are the crucial causing a variation in the fuel mixing and combustion reaction when using syngas as a principal fuel. We performed experimental measurements of particle image velocimetry (PIV), chemiluminescence of free radicals, flame temperature, and CO emission to examined how and why the varied proportions of H2 and CO affected the fuel mixing and combustion reaction of a syngas premixed impinging flame.
For a C3H8 premixed impinging flame on the V-shaped burner, its flame propagation speed increased with the addition of H2 and CO into the fuel mixture, which expanded its lean flammability. The addition of H2 in the fuel mixture enhanced the reaction intensity of flame sheet, but, decreased the reaction intensity of flame tip, which shows that the reaction zone was dominated by strong mass diffusivity. The temperature of flame sheet hence increased, and the temperature of flame tip decreased with increasing H2 proportion. Although the mass diffusivity of reaction zone on the flame sheet became weaker when CO presented a large proportion of fuel, the fuel mixture conducted the second reaction within the impinging zone through the well preheating and deceleration. The reaction intensity of impinging zone hence increased, and the emission of CO decreased.
We further examined the characteristics of fuel mixing and reaction of CH4/syngas/air impinging flame with H2/CO in varied proportions using a multi-way impinging burner. The results showed that a deceleration area in the main flow formed through the mutual impingement of two jet flows, which enhanced the mixing of fuel and air because of an increased momentum transfer. The deceleration area expanded with an increased CO proportion, which indicated that the mixing of fuel and air also increased with the increased CO proportion. CO provided in the syngas hence participated readily in the reaction of the CH4/syngas/air premixed impinging flames when the syngas contained CO in a large proportion. Our examination of the OH* chemiluminescence demonstrated that its intensity increased with increased CO proportion, which showed that the reaction between fuel and air accordingly increased.
Finally, to enhance the reaction intensity, we introduce a central air jet injecting into a CH4/syngas/air impinging flame. For a fuel-rich CH4/syngas/air impinging flame, the added central air jet caused no acceleration of the fuel mixture flowing toward downstream when ratio UC/UF was less than 1.0. The fuel mixture obtained additional oxidant from the central air jet, which increased its reaction intensity; the CO emission hence decreased and the flame temperature increased when the UC/UF ratio was less than 1.0. When UC/UF exceeded 1.5, however, the central air jet caused the fuel mixture to accelerate in its escape downstream because of the increased upward momentum; the reaction intensity thus exhibited a decreasing trend and the CO emission greatly increased. The results shown in our work provide a significant reference and a prospective concept for the utilization of syngas, which improves the feasibility of fuel-injection systems using syngas as an alternative fuel.
目錄
摘要 i
Abstract iii
目錄 i
圖表目錄 iv
符號說明 xi
第一章 前言 1
1-1 研究背景 1
1-2 研究動機與願景 3
第二章 文獻回顧 4
2-1 燃燒模式與燃燒載具 5
2-2 火焰與流場及火焰與火焰之間的交互作用 8
2-3 火焰速度與預熱效應 10
2-4 衝擊流場及衝擊燃燒器 12
2-5 合成氣燃燒特性 15
2-6 質傳與熱量擴散效應 22
2-7 燃燒反應光學量測技術 25
2-8 文獻總結 27
第三章 研究方法 28
3-1 燃燒載具 29
3-2 燃氣系統 31
3-2-1 燃料種類 31
3-2-2 燃氣流量控制與配置 32
3-2-3 當量比 34
3-2-4 實驗參數設計 36
3-3 實驗方法與設備 38
3-3-1操作區間與火焰影像擷取 38
3-3-2溫度量測 40
3-3-3廢氣排放量測 42
3-3-4火焰傳播速度 45
3-3-5火焰長度 46
3-3-6高速粒子影像測速法 47
3-3-7化學螢光法 56
第四章 丙烷/氫氣與丙烷/一氧化碳衝擊火焰特性 60
4-1 V型衝擊燃燒器(V-shaped Burner) 60
4-2 添加氫氣與一氧化碳對丙烷預混火焰操作區間之影響 63
4-3 火焰型態與火焰傳播速度 66
4-4 流場可視化與流場分析 73
4-5 C3H8/H2/air與C3H8/CO/air衝擊火焰化學螢光分析 75
4-6 火焰溫度與一氧化碳排放 80
第五章 甲烷/合成氣預混衝擊火焰特性 87
5-1 H2/CO比例對CH4/syngas/air預混衝擊火焰操作區間之影響 87
5-2 CH4/syngas/air預混衝擊火焰之典型火焰型態與火焰傳播速度 90
5-3 燃燒流場結構 95
5-4 CH4/syngas/air預混衝擊火焰之流場特性分析 98
5-5 CH4/syngas/air預混衝擊火焰化學螢光分析 103
5-6 一氧化碳排放與火焰溫度 108
第六章 添加中心空氣噴流對甲烷/合成氣預混衝擊火焰之影響 112
6-1 中心空氣噴流對CH4/syngas/air預混衝擊火焰穩定性之影響 112
6-2 添加中心空氣噴流對火焰結構之影響 114
6-3 燃燒流場結構與PIV速度場 118
6-4 中心空氣噴流對CH4/syngas/air預混衝擊火焰反應強度之影響 122
6-5 一氧化碳排放與火焰溫度 126
第七章 結論與未來展望 130
7-1 結論 130
7-2 未來展望 132
第八章 參考文獻 134
Appendix 149
第九章 作者簡歷 151

圖表目錄
圖2- 1 文獻回顧架構圖 4
圖2- 2合成氣火焰傳播速度(圖片來源:Lee et al., 2014) 16
圖2- 3 Bunsen flame在不同H2/CO時的火焰結構(圖片來源Bouvet et al., 2011) 23
圖2- 4 H2/CO富油火焰隨氫氣比例與當量比不同之路易斯數變化 24

表2- 1燃料之反應熱、絕熱火焰溫度及火焰傳播速度(重製參考:Turns, 2006; Law, 2006) 21
表2- 2常見的鍵結方式與能量(重製參考:Law, 2006) 21
表2- 3常見的碳氫燃料路易斯數(重製參考:Law, 2006) 22
表2- 4自由基生成路徑與特徵波長(重製參考:García-Armingol, 2013) 26

圖3- 1研究架構圖 28
圖3- 2 V型衝擊燃燒器實體圖及結構示意圖。(a)燃燒器實體照片,(b)內部整流結構,(c)結構圖 29
圖3- 3多向衝擊燃燒器工程圖及結構示意圖。(a)工程圖,(b)示意圖及坐標系,(c)二向衝擊示意圖,(d)三向衝擊示意圖。 31
圖3- 4 (a)氣體質量流量計;(b)數位流量控制器 33
圖3- 5燃氣供應配置圖 33
圖3- 6 Nikon D90數位相機與AF Micro Nikkor微焦距鏡頭 38
圖3- 7 R型熱電偶與數位溫度顯示器 41
圖3- 8三軸微步進電控移動平台與控制器 41
圖3- 9氣體分析實驗示意圖 44
圖3- 10Ecom-B氣體分析儀 45
圖3- 11 (a)本生燈法計算火焰傳播速度示意圖;(b)燃燒器轉置45°時 (重繪參考自Turns, 2006; Bouvet et al., 2011) 46
圖3- 12雷射光路及鏡組設置圖 49
圖3- 13 PIV實驗管路配置粒子供應系統示意圖 50
圖3- 14 PIV實驗之原始影像與使用之氧化鋁粉 51
圖3- 15 Nd:YVO4二極體激發固態雷射(Sprout-G-12W) 52
圖3- 16 Phantom v7.3高速攝影機與532 nm窄頻濾鏡 54
圖3- 17光學濾鏡組和Nikon PF10545MF-UV鏡頭 57
圖3- 18化學螢光法實驗示意圖 58
圖3- 19訊號放大波段(VIDEO SCOPE INTERNATIONAL, LTD)與訊號放大器實體 58

表3- 1燃料與氧化劑之性質 32
表3- 2單一燃料與丙烷混燒-V型燃燒器 37
表3- 3合成氣與甲烷混燒-多向衝擊燃燒器 37
表3- 4 Nikon D90數位相機詳細規格 39
表3- 5 AF Micro Nikkor微焦距鏡頭規格 40
表3- 6 GIGARISE SE6000數位溫度顯示器規格 42
表3- 7Ecom-B氣體分析儀規格 45
表3- 8常用於氣體流場中的固體追蹤粒子(重製參考Raffel et al., 2013) 48
表3- 9 Sprout-G-12W雷射規格 52
表3- 10 Phantom v7.3之規格 54
表3- 11 Phantom v7.3之時-空解析度對照表 55
表3- 12 Generation III MCP Image Intensifier訊號放大器之規格 58

圖4- 1 V型衝擊燃燒器之凹槽結構衝擊流場示意圖(重繪參考:Li et al., 2012) 60
圖4- 2丙烷預混貧油火焰操作區間分布。(a)平面型燃燒器;(b)V型衝擊燃燒器 62
圖4- 3 C3H8/H2/air貧油火焰操作區間分布(Uexit = 1.5 m/s)。(a)平面型燃燒器;(b)V型衝擊燃燒器 64
圖4- 4 C3H8/CO/air貧油火焰操作區間分布(Uexit = 1.5 m/s)。(a)平面型燃燒器;(b)V型衝擊燃燒器 65
圖4- 5 C3H8/air、C3H8/H2/air與C3H8/CO/air衝擊火焰隨當量比改變之火焰型態 68
圖4- 6對應圖4-5各火焰利用Bunsen method計算之火焰傳播速度 69
圖4- 7 C3H8/H2/air與C3H8/CO/air衝擊火焰在固定當量比時,隨氫氣及一氧化碳比例改變之火焰型態照片。(C3H8/H2/air當量比0.5;C3H8/CO/air當量比0.7) 71
圖4- 8對應圖4-7各火焰利用Bunsen method計算之火焰傳播速度 72
圖4- 9丘型火焰及其流場可視化照片 74
圖4- 10 M型火焰及其流場可視化照片 75
圖4- 11 C3H8/H2/air衝擊火焰在當量比0.5時,OH*與CH*隨燃料中氫氣比例變化之分布圖 77
圖4- 12 C3H8/CO/air衝擊火焰在當量比0.7時,CH*隨燃料中一氧化碳比例變化之分布圖 78
圖4- 13 C3H8/air、C3H8/H2/air與C3H8/CO/air衝擊火焰在不同當量比時的CH*分布 79
圖4- 14 C3H8/H2/air與C3H8/CO/air衝擊火焰在固定當量比時,火焰面及火焰尖端隨燃料中氫氣及一氧化碳比例變化之火焰溫度 81
圖4- 15為對應圖4-5火焰型態之C3H8/air、C3H8/H2/air與C3H8/CO/air貧油衝擊火焰之火焰面溫度隨不同當量比之變化 83
圖4- 16 C3H8/H2/air與C3H8/CO/air衝擊火焰在固定當量比時,一氧化碳排放濃度隨燃料中氫氣及一氧化碳比例之變化。 85
圖4- 17 (a)對應圖4-5火焰型態之C3H8/air、C3H8/H2/air與C3H8/CO/air衝擊火焰之一氧化碳排放濃度;(b) M型火焰 86

表4- 1對應圖4-5之C3H8/air衝擊火焰的燃氣參數 68
表4- 2對應圖4-5之C3H8/H2/air與C3H8/CO/air衝擊火焰的燃氣參數 69
表4- 3對應圖4-7之C3H8/H2/air與C3H8/CO/air衝擊火焰的燃氣參數 72
表4- 4氫氧基與碳氫基生成路徑與特徵波長 75

圖5- 1 CH4/syngas/air預混衝擊火焰操作區間隨H2/CO比例和當量比的變化,(a)燃氣出口流速5.0 m/s;(b)燃氣出口流速7.5 m/s 89
圖5- 2燃氣出口流速5.0 m/s及7.5 m/s時,CH4/syngas/air預混衝擊火焰之火焰型態照片( = 1.0 and 1.2) 91
圖5- 3燃氣出口流速5.0 m/s及7.5 m/s時,CH4/syngas/air預混衝擊火焰之火焰型態照片( = 1.4, 1.6, and 2.0) 92
圖5- 4 Uexit = 5.0 m/s時各穩定的CH4/syngas/air預混衝擊火焰(a)視覺錐形內焰長度;與(b)利用Bunsen method計算之火焰傳播速度 94
圖5- 5 Uexit = 7.5 m/s時各穩定的CH4/syngas/air預混衝擊火焰(a)視覺錐形內焰長度;與(b)利用Bunsen method計算之火焰傳播速度 94
圖5- 6 CH4/syngas/air預混衝擊火焰之流場可視化照片,(a)穩定的火焰;(b)上飄火焰 96
圖5- 7衝擊火焰的反應流場與等溫衝擊流場之流場可視化比較,(a)上飄火焰(反應流場);(b)等溫流場(非反應流場) 97
圖5- 8 CH4/syngas/air預混衝擊火焰衝擊區紊流強度,(a)穩定火焰;(b)上飄火焰 97
圖5- 9 CH4/syngas/air預混衝擊火焰速度場分布,(a)  = 1.4, H2/CO = 60/40;(b)  = 1.4, H2/CO = 50/50;(c)  = 2.0, H2/CO = 80/20;(d)  = 2.0, H2/CO = 50/50;(e)  = 2.0, H2/CO = 20/80 99
圖5- 10 CH4/syngas/air預混衝擊火焰渦度場分布,(a)  = 1.4, H2/CO = 60/40;(b)  = 1.4, H2/CO = 50/50;(c)  = 2.0, H2/CO = 80/20;(d)  = 2.0, H2/CO = 20/80 100
圖5- 11 CH4/syngas/air預混衝擊火焰之燃燒流場應變率分布,(a)  = 1.4, H2/CO = 40/60;(b)  = 1.4, H2/CO = 50/50;(c)  = 2.0, H2/CO = 20/80;(d)  = 2.0, H2/CO = 80/20 102
圖5- 12燃氣出口流速5.0 m/s時OH自由基螢光分布位置與強度,(a) - (b)  = 1.0; (c) - (h)  = 1.4; (c) - (h)  = 2.0 104
圖5- 13燃氣出口流速7.5 m/s時OH自由基螢光分布位置與強度,(a)  = 0.8; (b)- (c)  = 1.0; (d) - (i)  = 1.4; (j) - (p)  = 2.0 105
圖5- 14燃氣出口流速5.0 m/s時CH自由基螢光分布位置與強度,(a) - (b)  = 1.0; (c) - (h)  = 1.4; (c) - (h)  = 2.0 106
圖5- 15燃氣出口流速7.5 m/s時CH自由基螢光分布位置與強度,(a)  = 0.8; (b)- (c)  = 1.0; (d) - (i)  = 1.4; (j) - (p)  = 2.0 107
圖5- 16 CH4/syngas/air預混衝擊火焰(穩定狀態下)之一氧化碳排放濃度 109
圖5- 17不同當量比及不同H2/CO比例時的CH4/syngas/air預混衝擊火焰中心軸溫度分布與其對應之火焰型態 111

圖6- 1火焰穩定區域,及穩定區域隨添加中心空氣噴流之變化,(a)無中心空氣噴流時;(b) H2/CO = 20/80;(c) H2/CO = 50/50;(d) H2/CO = 80/20 113
圖6- 2出口流速5.0 m/s、當量比2.0時,高-、中-、低-一氧化碳比例之CH4/syngas/air預混衝擊火焰型態隨UC/UF比值改變之火焰型態照片 116
圖6- 3穩定的CH4/syngas/air預混衝擊火焰與上飄型CH4/syngas/air預混衝擊火焰添加中心空氣噴流後火焰型態之變化 117
圖6- 4未添加中心空氣噴流時CH4/syngas/air預混衝擊火焰之燃燒流場可視化 118
圖6- 5 UC/UF = 1.0時CH4/syngas/air預混衝擊火焰之燃燒流場可視化 119
圖6- 6 UC/UF = 2.5時CH4/syngas/air預混衝擊火焰之燃燒流場可視化 120
圖6- 7 CH4/syngas/air預混衝擊火焰燃燒流場速度分布,(a)未添加中心空氣噴流;(b) UC/UF = 1.0;(c) UC/UF = 2.5 121
圖6- 8固定燃氣出口流速5.0 m/s及當量比2.0時,高-、中-和低-一氧化碳比例之CH4/syngas/air預混衝擊火焰隨不同UC/UF比值之OH自由基螢光分布與強度 123
圖6- 9高-一氧化碳比例之CH4/syngas/air預混衝擊火焰,(a) OH自由基平均螢光強度;(b)相對應的火焰長度 124
圖6- 10中-一氧化碳比例之CH4/syngas/air預混衝擊火焰,(a) OH自由基平均螢光強度;(b)相對應的火焰長度 125
圖6- 11低-一氧化碳比例之CH4/syngas/air預混衝擊火焰,(a) OH自由基平均螢光強度;(b)相對應的火焰長度 126
圖6- 12高當量比(2.0及2.5)之CH4/syngas/air預混衝擊火焰隨UC/UF比值改變時的一氧化碳排放濃度,(a) H2/CO = 20/80;(b) H2/CO = 50/50;(c) H2/CO = 80/20 127
圖6- 13低當量比(1.4及1.6)之CH4/syngas/air預混衝擊火焰隨UC/UF比值改變時的一氧化碳排放濃度,(a) H2/CO = 20/80;(b) H2/CO = 50/50;(c) H2/CO = 80/20 127
圖6- 14 CH4/syngas/air預混衝擊火焰之火焰溫度分布 129

圖7- 1可調距離與角度之衝擊載具及夾具 133
圖7- 2多向噴流衝擊載具示意圖 133
Ballard-Tremeer, G., & Jawurek, H. (1999). The “hood method” of measuring emissions of rural cooking devices. Biomass and Bioenergy, 16(5), 341-345.
Ballester, J., & García-Armingol, T. (2010). Diagnostic techniques for the monitoring and control of practical flames. Progress in Energy and Combustion Science, 36(4), 375-411.
Bennett, B. A. V., McEnally, C. S., Pfefferle, L. D., & Smooke, M. D. (2000). Computational and experimental study of axisymmetric coflow partially premixed methane/air flames. Combustion and Flame, 123(4), 522-546
Blevins, L. G., Renfro, M. W., Lyle, K. H., Laurendeau, N. M., & Gore, J. P. (1999). Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames. Combustion and Flame, 118(4), 684-696.
Boushaki, T., Mergheni, M., Sautet, J., & Labegorre, B. (2008). Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner. Experimental Thermal and Fluid Science, 32(7), 1363-1370.
Boushaki, T., & Sautet, J.-C. (2010). Characteristics of flow from an oxy-fuel burner with separated jets: influence of jet injection angle. Experiments in Fluids, 48(6), 1095-1108.
Boushaki, T., Sautet, J.-C., & Labegorre, B. (2009). Control of flames by tangential jet actuators in oxy-fuel burners. Combustion and Flame, 156(11), 2043-2055.
Boushaki, T., Sautet, J., Salentey, L., & Labegorre, B. (2007). The behaviour of lifted oxy-fuel flames in burners with separated jets. International Communications in Heat and Mass Transfer, 34(1), 8-18.
Bouvet, N., Chauveau, C., Gökalp, I., & Halter, F. (2011). Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures. Proceedings of the Combustion Institute, 33(1), 913-920.
Bouvet, N., Chauveau, C., Gökalp, I., Lee, S.-Y., & Santoro, R. (2011). Characterization of syngas laminar flames using the Bunsen burner configuration. International Journal of Hydrogen Energy, 36(1), 992-1005.
Boxx, I., Arndt, C. M., Carter, C. D., & Meier, W. (2012). High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor. Experiments in Fluids, 52(3), 555-567.
Burbano, H., & Pareja, J. und Amell, A. A. (2011). Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2. International Journal of Hydrogen Energy, 36(4), 3232-3242.
Burbano, H. J., Amell, A. A., & García, J. M. (2008). Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners. International Journal of Hydrogen Energy, 33(13), 3410-3415.
Candel, S., Durox, D., Schuller, T., Bourgouin, J. F., & Moeck, J. P. (2014). Dynamics of swirling flames. Annual Review of Fluid Mechanics, 46, 147-173.
Chang, T.-W., & Chao, Y.-C. (2011). The stabilization characteristics of turbulent lifted diffusion flames of CH4/CO blended fuels. Proceedings of the Combustion Institute, 33(1), 1655-1662.
Charlston–Goch, D., Chadwick, B., Morrison, R., Campisi, A., Thomsen, D., & Laurendeau, N. (2001). Laser induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+ H2+ CH4 and air at high pressures: I. Nitrogen fixation. Combustion and Flame, 125(1), 729-743.
Chen, J.-W., Li, C.-C., Lin, H.-W., & Yang, J.-T. (2015). Effect of air coflow on lean premixed flames on a stratified Burner. Combustion Science and Technology, 187(9), 1317-1334.
Chen, Y.-C., Chang, C.-C., Pan, K.-L., & Yang, J.-T. (1998). Flame lift-off and stabilization mechanisms of nonpremixed jet flames on a bluff-body burner. Combustion and Flame, 115(1), 51-65
Choi, G. M., & Katsuki, M. (2001). Advanced low NOx combustion using highly preheated air. Energy conversion and Management, 42(5), 639-652.
Choudhuri, A. R., & Gollahalli, S. (2004). Intermediate radical concentrations in hydrogen–natural gas blended fuel jet flames. International Journal of Hydrogen Energy, 29(12), 1293-1302.
Dam, B., Ardha, V., & Choudhuri, A. (2010). Laminar flame velocity of syngas fuels. Journal of Energy Resources Technology, 132(4), 044501.
Das, A. K., Kumar, K., & Sung, C.-J. (2011). Laminar flame speeds of moist syngas mixtures. Combustion and Flame, 158(2), 345-353.
Dinesh, K. R., Jiang, X., & Van Oijen, J. (2013). Hydrogen-enriched non-premixed jet flames: compositional structures with near-wall effects. International Journal of Hydrogen Energy, 38(12), 5150-5164.
Dinesh, K. R., Jiang, X., & Van Oijen, J. (2014). Hydrogen-enriched non-premixed jet flames: analysis of the flame surface, flame normal, flame index and Wobbe index. International Journal of Hydrogen Energy, 39(12), 6753-6763.
Disimile, P., Savory, E., & Toy, N. (1995). Mixing characteristics of twin impinging circular jets. Journal of Propulsion and Power, 11(6), 1118-1124.
Domingo, P., & Vervisch, L. (1996). Triple flames and partially premixed combustion in autoignition of non-premixed turbulent mixtures. In Symposium (International) on Combustion, 26(1), 233-240
Dong, C., Zhou, Q., Zhao, Q., Zhang, Y., Xu, T., & Hui, S. (2009). Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel, 88(10), 1858-1863.
Elangovan, S., Solaiappan, A., & Rathakrishnan, E. (1996). Studies on twin non-parallel unventilated axisymmetric jets. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 210(4), 309-321.
Esquiva-Dano, I., Nguyen, H. T., & Escudie, D. (2001). Influence of a bluff-body’s shape on the stabilization regime of non-premixed flames. Combustion and Flame, 127(4), 2167-2180.
Fu, J., Tang, C., Jin, W., Thi, L. D., Huang, Z., & Zhang, Y. (2013). Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. International Journal of Hydrogen Energy, 38(3), 1636-1643.
García-Armingol, T., Ballester, J., & Smolarz, A. (2013). Chemiluminescence-based sensing of flame stoichiometry: influence of the measurement method. Measurement, 46(9), 3084-3097.
Gauducheau, J., Denet, B., & Searby, G. (1998). A numerical study of lean CH4/H2/air premixed flames at high pressure. Combustion Science and Technology, 137(1-6), 81-99.
Guo, H., Smallwood, G. J., Liu, F., Ju, Y., & Gülder, Ö. L. (2005). The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proceedings of the Combustion Institute, 30(1), 303-311.
Gupta, A. K., Beer, J. M., & Swithenbank, J. (1977). Concentric multi-annular swirl burner: stability limits and emission characteristics. In Symposium (International) on Combustion, 16(1) 79-91
Gupta, A. K., Bolz, S., & Hasegawa, T. (1999). Effect of air preheat temperature and oxygen concentration on flame structure and emission. Transactions-American Society of Mechanical Engineers Journal of Energy Resources Technology, 121, 209-216.
Han, D., & Mungal, M. (2003). Simultaneous measurements of velocity and CH distribution. Part II: deflected jet flames. Combustion and Flame, 133(1), 1-17.
He, Y., Wang, Z., Yang, L., Whiddon, R., Li, Z., Zhou, J., & Cen, K. (2012). Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel, 95, 206-213.
Huang, R. F., & Yen, S. C. (2008). Aerodynamic characteristics and thermal structure of nonpremixed reacting swirling wakes at low Reynolds numbers. Combustion and Flame, 155(4), 539-556.
Ikoku, C. U. (1984). Natural Gas Reservoir Engineering. New York, NY: John Wiley and Sons.
Jin, W., Wang, J., Nie, Y., Yu, S., & Huang, Z. (2015). Experimental study on flame instabilities of laminar premixed CH4/H2/air non-adiabatic flat flames. Fuel, 159, 599-606.
Katsuki, M., & Hasegawa, T. (1998). The science and technology of combustion in highly preheated air. In Symposium (International) on Combustion, 27(2) 3135-3146
Kéromnès, A., Metcalfe, W. K., Heufer, K. A., Donohoe, N., Das, A. K., Sung, C.-J., Mathieu, O. (2013). An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 160(6), 995-1011.
Kanury, A. (1975). Introducing to Combustion Phenomena. New York, NY: Gordon and Breach Science Publishers. Inc.
Kaskan, W. (1957). The dependence of flame temperature on mass burning velocity. Paper presented at the Symposium (International) on Combustion.
Kiefer, J., Li, Z., Zetterberg, J., Bai, X.-S., & Aldén, M. (2008). Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combustion and Flame, 154(4), 802-818.
Kim, H. S., Arghode, V. K., & Gupta, A. K. (2009). Flame characteristics of hydrogen-enriched methane–air premixed swirling flames. International Journal of Hydrogen Energy, 34(2), 1063-1073.
Kim, Y. S., Lee, J. J., Kim, T. S., & Sohn, J. L. (2011). Effects of syngas type on the operation and performance of a gas turbine in integrated gasification combined cycle. Energy Conversion and Management, 52(5), 2262-2271.
Kline, S. J. (1953). The description of uncertainties in single sample experiments. Mechanical Engineering, 75, 3-9.
Kojima, J., Ikeda, Y., & Nakajima, T. (2000). Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames. Proceedings of the Combustion Institute, 28(2), 1757-1764.
Kwok, L., Leung, C., & Cheung, C. (2005). Heat transfer characteristics of an array of impinging pre-mixed slot flame jets. International Journal of Heat and Mass Transfer, 48(9), 1727-1738.
Kumar, K., Mittal, G., Sung, C. J., & Law, C. K. (2008). An experimental investigation of ethylene/O2/diluent mixtures: laminar flame speeds with preheat and ignition delays at high pressures. Combustion and Flame, 153(3), 343-354.
Lafay, Y., Renou, B., Cabot, G., & Boukhalfa, M. (2008). Experimental and numerical investigation of the effect of H2 enrichment on laminar methane–air flame thickness. Combustion and Flame, 153(4), 540-561.
Landers, B. D., & Disimile, P. J. (2015). The growth characteristics of transient impinging axisymmetric turbulent jets. Journal of Flow Visualization and Image Processing, 22(1-3).
Landers, B. D. (2016). Mixing Characteristics of Turbulent Twin Impinging Axisymmetric Jets at Various Impingement Angles. (Doctoral dissertation, University of Cincinnati).
Lapalme, D., Lemaire, R., & Seers, P. (2017). Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results. International Journal of Hydrogen Energy, 42(12), 8314-8328.
Lask, G., & Wagner, H. G. (1961). Influence of additives on the velocity of laminar flames. Paper presented at the Symposium (International) on Combustion.
Law, C. K., & Kwon, O. (2004). Effects of hydrocarbon substitution on atmospheric hydrogen–air flame propagation. International Journal of Hydrogen Energy, 29(8), 867-879.
Law, C. K. (2006) Combustion Physics. New York, NY: Cambridge University Press.
Lawn, C. (2000). Distributions of instantaneous heat release by the cross-correlation of chemiluminescent emissions. Combustion and Flame, 123(1), 227-240.
Lee, H., Jiang, L., & Mohamad, A. (2014). A review on the laminar flame speed and ignition delay time of Syngas mixtures. International Journal of Hydrogen Energy, 39(2), 1105-1121.
Lee, I. B., Woo, I. S., & Lee, M. C. (2016). Effects of nitrogen dilution on the NOx and CO emission of H2/CO/CH4 syngases in a partially-premixed gas turbine model combustor. International Journal of Hydrogen Energy, 41(35), 15841-15851.
Lee, T.-W., North, G., & Santavicca, D. (1993). Surface properties of turbulent premixed propane/air flames at various Lewis numbers. Combustion and Flame, 93(4), 445-456.
Li, C.-C., Chen, J.-W., & Yang, J.-T. (2012). Stabilization of double flames interacting with the intersecting flow on a V-shaped burner. Combustion Science and Technology, 184(12), 2117-2135.
Li, H., Wong, T., Leung, C., & Probert, S. (2006). Thermal performances and CO emissions of gas-fired cooker-top burners. Applied Energy, 83(12), 1326-1338.
Lin, H.-C., Cheng, T.-S., Chen, B.-C., Ho, C.-C., & Chao, Y.-C. (2009). A comprehensive study of two interactive parallel premixed methane flames on lean combustion. Proceedings of the Combustion Institute, 32(1), 995-1002.
Lieuwen, T., Yang, V., & Yetter, R. (2009). Synthesis gas combustion: fundamentals and applications: CRC Press.
Loretero, M., & Huang, R. (2010). Behaviors of flame and flow of swirling wake during fuel jet oscillation due to acoustic excitations. Journal of Mechanics, 26(3), 279-286.
Meyer, T. R., Fiechtner, G. J., Gogineni, S. P., Rolon, J. C., Carter, C. D., & Gord, J. R. (2004). Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-air counterflow diffusion flames. Experiments in Fluids, 36(2), 259-267.
Mishra, D. (2004). Emission studies of impinging premixed flames. Fuel, 83(13), 1743-1748.
Mishra, T., Datta, A., & Mukhopadhyay, A. (2006). Comparison of the structures of methane–air and propane–air partially premixed flames. Fuel, 85(9), 1254-1263.
Moffat, R. (1982). Contributions to the theory of single-sample uncertainty analysis. ASME, Transactions, Journal of Fluids Engineering, 104(2), 250-258.
Mueller, C. J., Driscoll, J. F., Reuss, D. L., Drake, M. C., & Rosalik, M. E. (1998). Vorticity generation and attenuation as vortices convect through a premixed flame. Combustion and Flame, 112(3), 342IN3347-346IN6358.
Mueller, M., Kim, T., Yetter, R., & Dryer, F. (1999). Flow reactor studies and kinetic modeling of the H2/O2 reaction. International Journal of Chemical Kinetics, 31(2), 113-125.
Mueller, M., Yetter, R., & Dryer, F. (1999). Flow reactor studies and kinetic modeling of the H2/O2/NOx and CO/H2O/O2/NOx reactions. International Journal of Chemical Kinetics, 31(10), 705-724.
Naha, S., & Aggarwal, S. K. (2004). Fuel effects on NOx emissions in partially premixed flames. Combustion and Flame, 139(1), 90-105.
Natarajan, J., Lieuwen, T., & Seitzman, J. (2007). Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combustion and Flame, 151(1), 104-119.
Nishimura, T., Kaga, T., Shirotani, K., & Kadowaki, J. (1998). Vortex structures and temperature fluctuations in a bluff-body burner. Journal of Visualization, 1(3), 271-281.
Nishimura, T., Kunitsugu, K., & Morio, K.-i. (2012). The hysteresis phenomenon in flame lift-off on a bluff-body burner under airflow dominant conditions. Combustion and Flame, 159(4), 1499-1502.
Nosseir, N., Peled, U., & Hildebrand, G. (1987). Pressure field generated by jet-on-jet impingement. AIAA Journal, 25(10), 1312-1317.
Okafor, E. C., Nagano, Y., & Kitagawa, T. (2016). Experimental and theoretical analysis of cellular instability in lean H2-CH4-air flames at elevated pressures. International Journal of Hydrogen Energy, 41(15), 6581-6592.
Oh, J., Noh, D., & Lee, E. (2013). The effect of CO addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace. Applied Energy, 112, 350-357.
Pan, J. C., Vangsness, M. D., & Ballal, D. R. (1991). Aerodynamics of bluff body stabilized confined turbulent premixed flames. Paper presented at ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers.
Pan, K.-L., Li, C.-C., Juan, W.-C., & Yang, J.-T. (2009). Low-frequency oscillation of a non-premixed flame on a bluff-body burner. Combustion Science and Technology, 181(10), 1217-1230.
Pareja, J., Burbano, H. J., & Ogami, Y. (2010). Measurements of the laminar burning velocity of hydrogen–air premixed flames. International Journal of Hydrogen Energy, 35(4), 1812-1818.
Prathap, C., Ray, A., & Ravi, M. (2012). Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2–CO mixtures at atmospheric condition. Combustion and Flame, 159(2), 482-492.
Raffel, M., Willert, C. E., & Kompenhans, J. (2007). Particle Image Velocimetry: a Practical Guide. New York, NY: Springer Science & Business Media.
Rho, B. J., Kim, J. K., & Dwyer, H. A. (1990). Experimental study of a turbulent cross jet. AIAA Journal, 28(5), 784-789.
Rajaratnam, N., & Wu, S. (1992). Intersecting circular jets of unequal momentum flux. Journal of Hydraulic Research, 30(6), 755-768.
Rolon, J., Veynante, D., Martin, J., & Durst, F. (1991). Counter jet stagnation flows. Experiments in Fluids, 11(5), 313-324.
Sahu, K., Kundu, A., Ganguly, R., & Datta, A. (2009). Effects of fuel type and equivalence ratios on the flickering of triple flames. Combustion and Flame, 156(2), 484-493.
Samaniego, J. M., & Mantel, T. (1999). Fundamental mechanisms in premixed turbulent flame propagation via flame–vortex interactions: Part I: experiment. Combustion and Flame, 118(4), 537-556.
Samiran, N. A., Ng, J.-H., Jaafar, M. N. M., Valera-Medina, A., & Chong, C. T. (2016). H2-rich syngas strategy to reduce NOx and CO emissions and improve stability limits under premixed swirl combustion mode. International Journal of Hydrogen Energy, 41(42), 19243-19255.
Schefer, R. W., Wicksall, D., & Agrawal, A. (2002). Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proceedings of the Combustion Institute, 29(1), 843-851.
Shih, H.-Y., & Hsu, J.-R. (2011). A computational study of combustion and extinction of opposed-jet syngas diffusion flames. International Journal of Hydrogen Energy, 36(24), 15868-15879.
Sinibaldi, J. O., Driscoll, J. F., Mueller, C. J., Donbar, J. M., & Carter, C. D. (2003). Propagation speeds and stretch rates measured along wrinkled flames to assess the theory of flame stretch. Combustion and Flame, 133(3), 323-334.
Somaraj, S., Padiyar, K., & Natarajan, R. (2014). Interference Effects in Multiple Gaseous Diffusion Flames. Defence Science Journal, 38(3), 245-259.
Strehlow, R. A. (1984). Combustion Fundamentals. London, UK: McGraw-Hill College.
Su, A., & Liu, Y.-C. (2002). Investigation of impinging diffusion flames with inert gas. International Journal of Heat and Mass Transfer, 45(15), 3251-3257.
Sun, C. J., Sung, C. J., He, L., & Law, C. K. (1999). Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters. Combustion and Flame, 118(1), 108-128.
Taamallah, S., Vogiatzaki, K., Alzahrani, F., Mokheimer, E., Habib, M., & Ghoniem, A. (2015). Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Applied Energy, 154, 1020-1047.
Tang, C., Huang, Z., Jin, C., He, J., Wang, J., Wang, X., & Miao, H. (2008). Laminar burning velocities and combustion characteristics of propane–hydrogen–air premixed flames. International Journal of Hydrogen Energy, 33(18), 4906-4914.
Turns, S. R. (2006). An Introduction to Combustion. Boston, MA: MacGraw Hill.
Vagelopoulos, C., & Egolfopoulos, F. (1994). Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Paper presented at the Symposium (international) on Combustion.
Waitz, I., Qiu, Y., Manning, T., Fung, A., Elliot, J., Kerwin, J., Greitzer, E. (1997). Enhanced mixing with streamwise vorticity. Progress in Aerospace Sciences, 33(5-6), 323-351.
Wang, J., Wei, Z., Yu, S., Jin, W., Xie, Y., Zhang, M., & Huang, Z. (2015). Effects of stretch and preferential diffusion on tip opening of laminar premixed Bunsen flames of syngas/air mixtures. Fuel, 148, 1-8.
Wang, J., Zhang, M., Huang, Z., Kudo, T., & Kobayashi, H. (2013). Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combustion and Flame, 160(11), 2434-2441.
Wender, I. (1996). Reactions of synthesis gas. Fuel processing technology, 48(3), 189-297.
Whitty, K. J., Zhang, H. R., & Eddings, E. G. (2008). Emissions from syngas combustion. Combustion Science and Technology, 180(6), 1117-1136.
Williams, T. C., & Shaddix, C. R. (2007). Contamination of carbon monoxide with metal carbonyls: Implications for combustion research. Combustion Science and Technology, 179(6), 1225-1230.
Wu, C.-Y., Chao, Y.-C., Cheng, T., Chen, C.-P., & Ho, C.-T. (2009). Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames. Combustion and Flame, 156(2), 362-373.
Wyse, C., Vininski, J., & Watanabe, T. (2002). Cylinder, purifier technologies for controlling: contamination in CO.(Gases/Gas Handling). Solid State Technology, 45(7), 125-128.
Yang, J.-T., Yen, C.-W., & Tsai, G.-L. (1994). Flame stabilization in the wake flow behind a slit V-gutter. Combustion and Flame, 99(2), 288-294.
Yang, J.-T., Chang, C.-C., Pan, K.-L., Kang, Y.-P., & Lee, Y.-P. (2002a). Thermal analysis and PLIF imaging of reacting flow behind a disc stabilizer with a central fuel jet. Combustion Science and Technology, 174(3), 71-92.
Yang, J.-T., Chang, C.-C., & Pan, K.-L. (2002b). Flow structures and mixing mechanisms behind a disc stabilizer with a central fuel jet. Combustion science and technology, 174(3), 93-124.
Yasiry, A. S., & Shahad, H. A. (2016). An experimental study of the effect of hydrogen blending on burning velocity of LPG at elevated pressure. International Journal of Hydrogen Energy, 41(42), 19269-19277.
Yokomori, T., & Mizomoto, M. (2003). Flame temperatures along a laminar premixed flame with a non-uniform stretch rate. Combustion and flame, 135(4), 489-502.
Yen, S.-C., Huang, Y.-Z., & San, K.-C. (2015). Thermal characteristics and exhaust-gas analysis behind bluff-body frustums. Fuel, 159, 519-529.
Yetter, R., & Dryer, F. (1992). Inhibition of moist carbon monoxide oxidation by trace amounts of hydrocarbons. Paper presented at the Symposium (International) on Combustion.
Yetter, R., Dryer, F., & Rabitz, H. (1991). A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. Combustion Science and Technology, 79(1-3), 97-128.
Yu, G., Law, C. K., & Wu, C. K. (1986). Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition. Combustion and Flame, 63(3), 339-347.
Zhang, Y., Shen, W., Fan, M., Zhang, H., & Li, S. (2014). Laminar flame speed studies of lean premixed H2/CO/air flames. Combustion and Flame, 161(10), 2492-2495.
Zhang, Y., Shen, W., Zhang, H., Wu, Y., & Lu, J. (2015). Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames. Fuel, 157, 115-121.
Zhen, H., Cheung, C., Leung, C., & Choy, Y. (2012a). A comparison of the emission and impingement heat transfer of LPG–H2 and CH4–H2 premixed flames. International Journal of Hydrogen Energy, 37(14), 10947-10955.
Zhen, H., Cheung, C., Leung, C., & Choy, Y. (2012b). Effects of hydrogen concentration on the emission and heat transfer of a premixed LPG-hydrogen flame. International Journal of Hydrogen Energy, 37(7), 6097-6105.
Zhen, H., Cheung, C., Leung, C., & Li, H. (2013). Thermal and heat transfer behaviors of an inverse diffusion flame with induced swirl. Fuel, 103, 212-219.
Zhen, H., Leung, C., & Cheung, C. (2011). Emission of impinging swirling and non-swirling inverse diffusion flames. Applied Energy, 88(5), 1629-1634.
Zhen, H., Leung, C., Cheung, C., & Huang, Z. (2014). Characterization of biogas-hydrogen premixed flames using Bunsen burner. International Journal of Hydrogen Energy, 39(25), 13292-13299.
Zhou, Z., Tao, Z., Lin, B., & Kong, W. (2013). Numerical investigation on effects of high initial temperatures and pressures on flame behavior of CO/H2/Air mixtures near the dilution limit. International Jurnal of Hydrogen Energy, 38(1), 274-281.
陳福安,2000,高負荷燃燒器之火焰雷射診測與燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
鄭翰昌,2001,多向衝擊型燃燒器燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
蔣淑卿,2002,複合進氣道燃燒器之火焰結構研究,國立清華大學動力機械工程學系碩士論文。
李志杰,2009,運用高速粒子影像測速技術探討火焰與流場動態交互作用,國立清華大學動力機械工程學系博士論文。
莫尚軒,2013,添加一氧化碳於衝擊丙烷火焰之燃燒特性研究,國立台灣大學機械工程學系碩士論文。
董祐廷,2015,丙烷與合成氣混燒特性研究,國立台灣大學機械工程學系碩士論文。
黃木杖俊,藤生昭,1995,「燃燒器裝置」,日本國特許廳公開特許報,特開平7-15139
白井豐,守屋好文,原正一,1995,「燃燒器裝置」,日本國特許廳公開特許報,特開平7-26010
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top