|
1. Kohler, T., Curty, L. K., Barja, F., van Delden, C. & Pechere, J. C. (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili, J Bacteriol. 182, 5990-6. 2. Lin, C. T., Huang, Y. J., Chu, P. H., Hsu, J. L., Huang, C. H. & Peng, H. L. (2006) Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1, Res Microbiol. 157, 169-75. 3. Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R. & Ishihama, A. (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli, J Biol Chem. 280, 1448-56. 4. Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G. & Laub, M. T. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis, PLoS Biol. 3, e334. 5. Biondi, E. G., Skerker, J. M., Arif, M., Prasol, M. S., Perchuk, B. S. & Laub, M. T. (2006) A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus, Mol Microbiol. 59, 386-401. 6. West, A. H. & Stock, A. M. (2001) Histidine kinases and response regulator proteins in two-component signaling systems, Trends Biochem Sci. 26, 369-76. 7. Delumeau, O., Dutta, S., Brigulla, M., Kuhnke, G., Hardwick, S. W., Volker, U., Yudkin, M. D. & Lewis, R. J. (2004) Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C, J Biol Chem. 279, 40927-37. 8. Adler, E., Donella-Deana, A., Arigoni, F., Pinna, L. A. & Stragler, P. (1997) Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases, Mol Microbiol. 23, 57-62. 9. Vijay, K., Brody, M. S., Fredlund, E. & Price, C. W. (2000) A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis, Mol Microbiol. 35, 180-8. 10. Arigoni, F., Duncan, L., Alper, S., Losick, R. & Stragier, P. (1996) SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma F during sporulation in Bacillus subtilis, Proc Natl Acad Sci U S A. 93, 3238-42. 11. Lucet, I., Borriss, R. & Yudkin, M. D. (1999) Purification, kinetic properties, and intracellular concentration of SpoIIE, an integral membrane protein that regulates sporulation in Bacillus subtilis, J Bacteriol. 181, 3242-5. 12. Jin, H. & Pancholi, V. (2006) Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification, J Mol Biol. 357, 1351-72. 13. Rajagopal, L., Clancy, A. & Rubens, C. E. (2003) A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence, J Biol Chem. 278, 14429-41. 14. Gee, K. R., Sun, W. C., Bhalgat, M. K., Upson, R. H., Klaubert, D. H., Latham, K. A. & Haugland, R. P. (1999) Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases, Anal Biochem. 273, 41-8. 15. Pastula, C., Johnson, I., Beechem, J. M. & Patton, W. F. (2003) Development of fluorescence-based selective assays for serine/threonine and tyrosine phosphatases, Comb Chem High Throughput Screen. 6, 341-6. 16. Chang, C. H., Zhu, J. & Winans, S. C. (1996) Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA protein, J Bacteriol. 178, 4710-6. 17. Munoz-Dorado, J., Inouye, S. & Inouye, M. (1991) A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium, Cell. 67, 995-1006. 18. Bork, P., Brown, N. P., Hegyi, H. & Schultz, J. (1996) The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues, Protein Sci. 5, 1421-5. 19. Mukhopadhyay, S., Kapatral, V., Xu, W. & Chakrabarty, A. M. (1999) Characterization of a Hank's type serine/threonine kinase and serine/threonine phosphoprotein phosphatase in Pseudomonas aeruginosa, J Bacteriol. 181, 6615-22. 20. Mougous, J. D., Gifford, C. A., Ramsdell, T. L. & Mekalanos, J. J. (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa, Nat Cell Biol. 9, 797-803. 21. Hughes, K. T. & Mathee, K. (1998) The anti-sigma factors, Annu Rev Microbiol. 52, 231-86. 22. Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S. & Lory, S. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa, Dev Cell. 7, 745-54. 23. Laskowski, M. A., Osborn, E. & Kazmierczak, B. I. (2004) A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa, Mol Microbiol. 54, 1090-103. 24. Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordonez, C. L., Lory, S., Walz, T., Joachimiak, A. & Mekalanos, J. J. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus, Science. 312, 1526-30. 25. Ventre, I., Goodman, A. L., Vallet-Gely, I., Vasseur, P., Soscia, C., Molin, S., Bleves, S., Lazdunski, A., Lory, S. & Filloux, A. (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes, Proc Natl Acad Sci U S A. 103, 171-6. 26. Kominek, L. A. & Halvorson, H. O. (1965) Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus, J Bacteriol. 90, 1251-9. 27. Hullin, R. P. & Hassall, H. (1962) The synthesis of cell constituents from butane-2,3-diol by Pseudomonas sp, Biochem J. 83, 298-303. 28. Juni, E. & Heym, G. A. (1956) A cyclic pathway for the bacterial dissimilation of 2, 3-butanediol, acetylmethylcarbinol, and diacetyl. I. General aspects of the 2, 3-butanediol cycle, J Bacteriol. 71, 425-32. 29. Johansen, L., Bryn, K. & Stormer, F. C. (1975) Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes, J Bacteriol. 123, 1124-30. 30. Blomqvist, K., Nikkola, M., Lehtovaara, P., Suihko, M. L., Airaksinen, U., Straby, K. B., Knowles, J. K. & Penttila, M. E. (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes, J Bacteriol. 175, 1392-404. 31. Lopez, J. M., Thoms, B. & Rehbein, H. (1975) Acetoin degradation in Bacillus subtilis by direct oxidative cleavage, Eur J Biochem. 57, 425-30. 32. Oppermann, F. B., Steinbuchel, A. & Schlegel, H. G. (1989) Evidence for oxidative thiolytic cleavage of acetoin in Pelobacter carbinolicus analogous to aerobic oxidative decarboxylation of pyruvate, FEMS Microbiol Lett. 51, 113-8. 33. Huang, M., Oppermann, F. B. & Steinbuchel, A. (1994) Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway, FEMS Microbiol Lett. 124, 141-50. 34. Ali, N. O., Bignon, J., Rapoport, G. & Debarbouille, M. (2001) Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis, J Bacteriol. 183, 2497-504. 35. Huang, M., Oppermann-Sanio, F. B. & Steinbuchel, A. (1999) Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway, J Bacteriol. 181, 3837-41. 36. Silbersack, J., Jurgen, B., Hecker, M., Schneidinger, B., Schmuck, R. & Schweder, T. (2006) An acetoin-regulated expression system of Bacillus subtilis, Appl Microbiol Biotechnol. 73, 895-903. 37. Peng, H. L., Yang, Y. H., Deng, W. L. & Chang, H. Y. (1997) Identification and characterization of acoK, a regulatory gene of the Klebsiella pneumoniae acoABCD operon, J Bacteriol. 179, 1497-504. 38. Boos, W. & Shuman, H. (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation, Microbiol Mol Biol Rev. 62, 204-29. 39. Leipe, D. D., Koonin, E. V. & Aravind, L. (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer, J Mol Biol. 343, 1-28. 40. Bao, Q., Lu, W., Rabinowitz, J. D. & Shi, Y. (2007) Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1, Mol Cell. 25, 181-92. 41. Joly, N., Bohm, A., Boos, W. & Richet, E. (2004) MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator malt by antagonizing inducer binding, J Biol Chem. 279, 33123-30. 42. Schlegel, A., Danot, O., Richet, E., Ferenci, T. & Boos, W. (2002) The N terminus of the Escherichia coli transcription activator MalT is the domain of interaction with MalY, J Bacteriol. 184, 3069-77. 43. Larquet, E., Schreiber, V., Boisset, N. & Richet, E. (2004) Oligomeric assemblies of the Escherichia coli MalT transcriptional activator revealed by cryo-electron microscopy and image processing, J Mol Biol. 343, 1159-69. 44. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. & Alnemri, E. S. (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation, J Biol Chem. 274, 17941-5. 45. Schreiber, V. & Richet, E. (1999) Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP, J Biol Chem. 274, 33220-6. 46. Labbe, D., Garnon, J. & Lau, P. C. (1997) Characterization of the genes encoding a receptor-like histidine kinase and a cognate response regulator from a biphenyl/polychlorobiphenyl-degrading bacterium, Rhodococcus sp. strain M5, J Bacteriol. 179, 2772-6. 47. Valdez, F., Gonzalez-Ceron, G., Kieser, H. M. & Servin-Gonzalez, L. (1999) The Streptomyces coelicolor A3(2) lipAR operon encodes an extracellular lipase and a new type of transcriptional regulator, Microbiology. 145 ( Pt 9), 2365-74. 48. Poon, K. K., Chu, J. C. & Wong, S. L. (2001) Roles of glucitol in the GutR-mediated transcription activation process in Bacillus subtilis: glucitol induces GutR to change its conformation and to bind ATP, J Biol Chem. 276, 29819-25. 49. De Schrijver, A. & De Mot, R. (1999) A subfamily of MalT-related ATP-dependent regulators in the LuxR family, Microbiology. 145 ( Pt 6), 1287-8. 50. Deng, W. L., Chang, H. Y. & Peng, H. L. (1994) Acetoin catabolic system of Klebsiella pneumoniae CG43: sequence, expression, and organization of the aco operon, J Bacteriol. 176, 3527-35. 51. Kondo, T., Strayer, C. A., Kulkarni, R. D., Taylor, W., Ishiura, M., Golden, S. S. & Johnson, C. H. (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria, Proc Natl Acad Sci U S A. 90, 5672-6. 52. Sambrook, J. & Russell, D. W. (2001) Molecular cloning : a laboratory manual, 3rd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 53. Peng, H. L., Shiou, S. R. & Chang, H. Y. (1999) Characterization of mdcR, a regulatory gene of the malonate catabolic system in Klebsiella pneumoniae, J Bacteriol. 181, 2302-6. 54. Barik, S. (1996) Site-directed mutagenesis in vitro by megaprimer PCR, Methods Mol Biol. 57, 203-15. 55. Shiue, S. J., Kao, K. M., Leu, W. M., Chen, L. Y., Chan, N. L. & Hu, N. T. (2006) XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL, Embo J. 25, 1426-35. 56. Lai, Y. C., Peng, H. L. & Chang, H. Y. (2003) RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level, J Bacteriol. 185, 788-800. 57. Yoshida, M. & Amano, T. (1995) A common topology of proteins catalyzing ATP-triggered reactions, FEBS Lett. 359, 1-5. 58. Marquenet, E. & Richet, E. (2007) How integration of positive and negative regulatory signals by a STAND signaling protein depends on ATP hydrolysis, Mol Cell. 28, 187-99. 59. Danot, O. (2001) A complex signaling module governs the activity of MalT, the prototype of an emerging transactivator family, Proc Natl Acad Sci U S A. 98, 435-40. 60. Lee, P. C., Umeyama, T. & Horinouchi, S. (2002) afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2), Mol Microbiol. 43, 1413-30. 61. Hu, Y., Ding, L., Spencer, D. M. & Nunez, G. (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation, J Biol Chem. 273, 33489-94. 62. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization, Mol Cell. 1, 949-57. 63. Dardonville, B. & Raibaud, O. (1990) Characterization of malT mutants that constitutively activate the maltose regulon of Escherichia coli, J Bacteriol. 172, 1846-52. 64. Richet, E. & Raibaud, O. (1987) Purification and properties of the MalT protein, the transcription activator of the Escherichia coli maltose regulon, J Biol Chem. 262, 12647-53. 65. Richet, E. & Raibaud, O. (1989) MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator, Embo J. 8, 981-7. 66. Furste, J. P., Pansegrau, W., Frank, R., Blocker, H., Scholz, P., Bagdasarian, M. & Lanka, E. (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector, Gene. 48, 119-31. 67. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants, Gene. 212, 77-86. 68. Osuna, R. & Bender, R. A. (1991) Klebsiella aerogenes catabolite gene activator protein and the gene encoding it (crp), J Bacteriol. 173, 6626-31. 69. Schwacha, A. & Bender, R. A. (1990) Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Klebsiella aerogenes, J Bacteriol. 172, 5477-81. 70. Chang, A. C. & Cohen, S. N. (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid, J Bacteriol. 134, 1141-56.
|