跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姚政宏
研究生(外文):CHENG-HUNG YAO
論文名稱:歐洲五國失業率之磁滯效應—非線性傅立葉函數之定態檢定
論文名稱(外文):Unemployment Hysteresis for 5 European Countries (PIIGS)- Stationary Test with a Nonlinear Fourier Function
指導教授:黃秋瓊黃秋瓊引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:經濟學所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:38
中文關鍵詞:磁滯效應失業率傅立葉函數定態檢定
外文關鍵詞:Hysteresis EffectUnemployment RateFourier Function
相關次數:
  • 被引用被引用:8
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:2
本文使用1980年至2010年的失業率資料,實證探討歐洲(PIIGS)五國失業率是否有磁滯效應,以作為政府制定政策的參考。
當不考慮結構性變動時,傳統單根檢定(ADF、PP、KPSS)的實證結果出現不一致,此可能是由於未考慮結構性變動,使定態序列出現近似單根的現象。因此為了改善此現象,本文以更具統計檢定力及效率的傅立葉函數檢定法來重新檢測失業率的定態特徵。
根據傅立葉函數定態檢定結果顯示,葡萄牙、義大利、西班牙失業率可拒絕單根檢定,代表失業率在長期會趨近自然失業率,政府不需過多的政策干預,而愛爾蘭和希臘失業率不拒絕單根檢定,亦即具有磁滯效應,衝擊會對均衡失業造成持續性的影響,因此政府必須干預並制定政策,使失業率回復到原來的水準。
目 錄
誌謝 .................................................. i
摘要 .................................................. ii
目錄 .................................................. iii
表目錄 ................................................ iv
圖目錄 ................................................ v
第一章 緒論 ........................................... 1
一、研究動機與目的 ............................. 1
二、本文架構 ................................... 3
第二章 文獻回顧 ....................................... 4
第三章 研究步驟與方法 ................................. 7
一、研究步驟 ................................... 7
二、研究方法 ................................... 8
第四章 歐洲五國(PIIGS)失業率的實證結果與分析 .......... 15
一、資料來源與分析 ............................. 15
二、單根檢定實證結果 ........................... 17
第五章 結論 ........................................... 19
參考文獻 .............................................. 21
附錄 .................................................. 24
參考文獻
林淑惠與張倉耀(2003),「台灣區域性失業率之磁滯效應-panel單根檢定方法與
應用」,逢甲大學經濟所碩士論文。
林瓊香與李秀雲(2001),「東亞國家失業率的panel單根檢定」,東吳大學經濟所博士論文。
陳旭昇(2010),時間序列分析,修訂版,臺灣東華,台北市。
黃淑卿(2011),「OECD國家磁滯性失業之實證研究」,經濟與管理論叢,第7卷第1期,頁135-158。
Becker, R., W. Enders and J. Lee (2006) “A Stationary Test in the Presence of an Unknown Number of Smooth Breaks”, Journal of Time Series Analysis, 27, 3, 381-409.
Blanchard, O and L. Summers (1986), “Hysteresis and the European Unemployment Problem,” NBER Macroeconomics Annual, 15-78.
Breuer, J.B., R. McNown, and M. Wallace (1999), “Series-Specific Tests for a Unit Root in a Panel Setting with and Application to Real Exchange Rates,” University of Colorado, Discussion Paper.
Brunello, G. (1990), “Hysteresis and ‘the Japanese Unemployment Problem’: A Preliminary Investigation,” Oxford Economic Papers, 42, 483-500.
Dejong, K.N., Nankervis, J.C. Savin, N.E. and Whiteman, C.H. (1992), “Integration
Versus Stationarity in the Time Series,” Econometrica, 60(2), 423-433.
Dickey, D.A. and W.A. Fuller (1979), “Distribution of the Estimators for Autoregression Time Series with a Unit Root,” Journal of American Statistical Association, 74, 427-432.
Hansen, B.E. (1995), “Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power,” Econometric Theory, 11, 1148-1172.
Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin (1992), “Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root,” Journal of Econometrics, 54, 159-178.
Le?曝-Ledesma (2002), “Unemployment Hysteresis in the US States and the EU: A Panel Approach,” Bulletin of Economic Research, 52, 95-103.
Levin, A. and C.F. Lin (1992), “Unit-Root Test in Panel Data: Asymptotic and Finite Sample Properties,” University of California at San Diego, Working Paper.
Mackinnon, J.C. (1991), “Critical Values for Cointegration Test,” University of California at San Diego, Working Paper.
Maddala, G.S. and S. Wu (1999), “A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test,” Oxford Bulletin of Economics and Statistics, 61, 631-652.
Mitchell, W.F. (1993), “Testing for Unit Roots and Persistence in OECD Unemployment Rates,” Applied Economics, 25, 1489-1501.
Nelson, C.R.and C.I. Plosser (1982), “Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications,” Journal of Monetary Economics, 10, 139-162.
Ng, S. and P. Perron (2000), “Lag length Selection and the Construction of Unit Root Tests with Good Size and Power,” Econometrica, 69(6), 1519-1554.
Perron, P. (1989), “The Great Crash, the Oil Price Shock and the Unit Root Hypothesis,”Econometrica, 57(6), 1361-1401.
Phelps, E. S. (1967), “Phillips Curves, Expectations of Inflation and Optimal Unemployment Over Time,”Economica, 34, 254-281.
Phillips, P.C.B. and P. Perron (1988), “Testing for a Unit Root in Time Series Regression,”Biometrika, 75, 335-346.
Schwert, G. William. (1989), “Tests for Unit Roots: A Monte Carlo Investigation,” Journal of Business and Economic Statistics, 7, 147-159.
Song, F.M. and Y. Wu (1997), “Hysteresis in Unemployment: Evidence from 48 U.S. States,” Economic Inquiry, 35, 235-243.
Song, F.M. and Y. Wu (1998), “Hysteresis in Unemployment: Evidence from OECD Countries,” The Quarterly Review of Economics and Finance, 38, 181-192.
Zivot, E. and D.W.K. Andrews (1992), “Further Evidence on the Great Crash, the Oil-price Shock, and the Unit Root Hypothesis,” Journal of Business and Economic Statistics, 10, 251-270.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top