|
A. Fundamentals of SRM [1] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford: Clarendon Press, 1993. [2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001. [3] H. C. Lovatt, M. C. Clelland, and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE Conf. Elect. Mach. and Drives, 1997, pp. 361-365. [4] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012. [5] A. Lebsir, A. Bentounsi, R. Rebbah, and S. Belakehal, “Comparative study of PMSM and SRM capabilities,” in Proc. IEEE POWERENG, 2013, pp. 760-763. [6] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched-reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008. [7] N. Schofield, S. A. Long, D. Howe, and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116-122, 2009. [8] P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: Concept to implementation, ” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010. [9] T. Ishikawa and H. Dohmeki, ”The fundamental design technique of switched reluctance motors, and comparison with PMSM” in Proc. IEEE ICEM, 2012, pp. 500-504. [10] K. Ohyama, Y. Nakazawa, K. Nozuka, and H. Fujii “Design of high efficient switched reluctance motor for electric vehicle,” in Proc. IEEE IECON, 2013, pp. 7325-7330. [11] N. Matsui, T. Kosaka, N. Minoshima, and Y. Ohdachi, “Development of SRM for spindle motor system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 580-585. [12] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241. [13] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012. [14] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan, and I. Husain, “Switched reluctance and permanent magnet brushless motors in highly dynamic situations: a comparison in the context of electric brakes,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 35-43, 2009. [15] L. Kolomeisev, D. Kraynov, S. Pakhomin, F. Rednov, E. Kallenbach, V. Kireev, T. Schneider, and J. Bocker, “Control of a linear switched reluctance motor as a propulsion system for autonomous railway vehicles,” in Proc. EPE-PEMC, 2008, pp. 1598-1603. [16] I-A. Viorel, L. Szabo, L. Lowenstein, and C. Stet, “Integrated starter-generators for automotive applications,” Acta Electrotehnica., vol. 45, no. 3, pp. 255-260, 2004. [17] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013. [18] R. Krishnan, D. Blanding, A. Bhanot, A. M. Staley, and N. S. Lobo, “High reliability SRM drive system for aerospace applications,” in Proc. IEEE IECON, 2003, vol. 2, pp. 1110-1115. B. SRM Converters [19] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991. [20] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992. [21] S. Mir, I. Husain, and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997. [22] A. Deris Zadeh, E. Adib, H. Farzanehfard, and S. M. Saghaian Nejad, “New converter for switched reluctance motor drive with wide speed range operation,” in Proc. IEEE PEDSTC, 2011, pp. 473-477. [23] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002. [24] H. L. Huy, K. Slimani, and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 355-362, 1991. [25] Y. Murai, J. Cheng, and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681. [26] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003. [27] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998. [28] A. Dahmane, F. Meebody, and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[29] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000. [30] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008. [31] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009. [32] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652. [33] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009. [34] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [35] C. Pollock and A. Michaelides, “Switched reluctance drives: a comparative evaluation,” IET Power Eng. J., vol. 9, no. 6, pp. 257-266, 1995. C. Modeling and Dynamic Controls [36] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000. [37] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003. [38] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000. [39] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001. [40] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009. [41] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75. [42] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999. [43] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003. [44] L. Ben Amor, L.-A. Dessaint, and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890. [45] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009. [46] G. John and A. R. Eastham, “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993, vol. 1, pp. 317-320. [47] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997. [48] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577. [49] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001. [50] C. Bian, Y. Man, C. Song, and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. IEEE WCICA, 2006, vol. 1, pp. 2490-2493. [51] M. A. A. Morsy, M. S. A. Moteleb, and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6. [52] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002. [53] D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992. [54] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 153, no. 3, pp. 348-360, 2006. [55] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Elect. Power Appl., vol. 4, no. 5, pp. 380-396, 2010. [56] V. P. Vujicic, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012. D. Commutation Instant Tuning [57] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IET EPE, 1993, vol. 6, pp. 20-25. [58] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92. [59] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783. [60] M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001. [61] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003. [62] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003. [63] Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Power Elect. Appl., vol. 1, no. 3, pp. 395-401, 2007. [64] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856. E. Switch-mode Rectifiers and Active Power Filters [65] M. Hengchun, F. C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997. [66] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [67] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998. [68] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [69] Y. Jang and M.M. Jovanović, “The Taipei rectifier– a new three-phase two-switch ZVS PFC DCM boost rectifier” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 686-694, 2013. [70] L. Ben-Brahim, “The analysis and compensation of dead-time effects in three phase PWM inverters,” in Proc. IEEE IECON, 1998, vol. 2, pp. 792-797. [71] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems– part I” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [72] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems– part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[73] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, 1999. [74] M. El-Habrouk, M.K. Darwish, and P. Mehta, “Active power filters: a review,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 403-413, 2000. [75] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley-IEEE Press, 2007. [76] P. Verdelho and G. D. Marques, “An active power filter and unbalanced current compensator,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 321-328, 1997. [77] S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3364-3375, 2010. [78] M. Sarra, J. Gaubert, A. Chaoui, and F. Krim, “Two control strategies comparison of a three phase shunt active power filter for power quality improvement with experimental validation,” in Proc. IEEE EPE, 2011, pp. 1-11. F. Regenerative Braking [79] B. T. Ooi, L. W. Dixon, A. B. Kulkarni, and M. Nishimoto, “An integrated AC drive system using a controlled-current PWM rectifier/inverter link,” IEEE Trans. Power Electron., vol. 3, no. 1, pp. 64-71, 1988. [80] J. W. Kolar, H. Ertl, F. C. Zach, V. Blasko, V. Kaura, and R. Lukaszewski, “A novel concept for regenerative braking of PWM-VSI drives employing a loss-free braking resistor,” in Proc. IEEE APEC, 1997, vol. 1, pp. 297-305. [81] B. Piepenbreier and L. Sack, “Regenerative drive converter with line-frequency switched rectifier and without DC link components,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3917-3923. [82] L. Lihua, K. Smedley, and J. Taotao, “A new three-phase rectifier for regenerative braking application,” in Proc. PESC, 2007, pp. 2854-2860. [83] J. Jiang and J. Holtz, “An efficient braking method for controlled AC drives with a diode rectifier front end,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1299-1307, 2001. [84] G. Hongwei, G. Yimin, and M. Ehsani, “Neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575. [85] A. Komatsuzaki, T. Banba, and I. Miki, “A position sensorless drive using estimation of turn-off angle regenerative braking in switching reluctance motor,” in Proc. IEEE ICEMS, 2007, pp. 450-455. H. Position Sensorless Control [86] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
[87] E. Bassily, “New rotor-position estimation technique for sensorless switched reluctance motor,” in Proc. IEEE AMC, 2008, pp. 399-404. [88] P. Bishop, A. Khalil, and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352. [89] E. Kayikci, M. C. Harke, and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, vol. 3, pp. 1632-1637. [90] E. Kayikci and R. D. Lorenz, “Self-sensing control of a four phase switched reluctance drive using high frequency signal injection including saturation effects,” in Proc. IEEE IEMDC, 2009, pp. 611-618. [91] G. Gallegos-Lopez, P. C. Kjaer, and T. J. E. Miller, “A new sensorless method for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 832-840, 1998. [92] T. Wakasa, H. J. Guo, and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON, 2002, vol. 1, pp. 502-507. [93] H. Gao, F. R. Salmasi, and M. Ehsani, “Sensorless control of SRM at standstill,” in Proc. IEEE APEC, 2001, vol. 2, pp. 850-856. [94] M. Krishnamurthy, C. S. Edrington, and B. Fahimi, “Prediction of rotor position at standstill and rotating shaft conditions in switched reluctance machines,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 225-233, 2006. [95] A. Komatsuzaki, T. Bamba, and I. Miki, “A position sensorless speed control for switched reluctance motor at low speeds,” in Proc. IEEE PES, 2007, pp. 1-7. [96] H. J. Guo, M. Takahashi, T. Watanabe, and O. Ichinokura, “A new sensorless drive method of switched reluctance motors based on motor's magnetic characteristics,” IEEE Trans. Magnetics, vol. 37, no. 4, pp. 2831-2833, 2001. [97] H. J. Guo, W. B. Lee, T. Watanabe, and O. Ichinokura, “An improved sensorless driving method of switched reluctance motors using impressed voltage pulse,” in Proc. IEEE PCC, 2002, vol. 3, pp. 977-980. [98] S. Kachapornkul, P. Somsiri, N. Chayopitak, K. Tungpimolrut, R. Pupadubsin, and P. Jitkreeyan, “Sensorless control of switched reluctance motor for three-phase full-bridge inverter drive,” in Proc. IEEE ICEMS, 2008, pp. 3321-3326. [99] G. Pasquesoone, R. Mikail, and I. Husain, “Position estimation at starting and lower speed in three-phase switched reluctance machines using pulse injection and two thresholds,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1724-1731, 2011. [100] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015. I. Others [101] “TMS320F28335 digital signal processors data manual,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, August 29, 2016.
[102] J. Y. Chai, Development and control of a switched-reluctance motor drive with power factor front-end, Ph. D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2008. [103] C. M. Wang, Development of switched-reluctance motor drive with three-phase switch-mode rectifier front-end, Master Thesis, Department of Electrical Engineering , National Tsing Hua University, ROC, 2010. [104] C. H. Tseng, A position sensorless switched-reluctance motor drive with three-phase four-quadrant switch-mode rectifier front-end, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2013. [105] Y. Y. Chen, Development of standard and position sensorless switched-reluctance motor drive with power factor corrected front-end, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2014.
|