跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游琇絨
研究生(外文):YOU,SHIOU-RONG
論文名稱:以重組大腸桿菌高密度醱酵生產胞外內切型木聚醣酶及其應用
論文名稱(外文):Production of extracellular endoxylanase by high-cell-density culture of recombinant Escherichia coli and its application.
指導教授:李文乾
指導教授(外文):LEE,WEN-CHIEN
口試委員:邱紫文曾銘仁段國仁
口試委員(外文):CHIOU,TZYY-WENTSENG,MIN-JENDUAN,KOW-JEN
口試日期:2016/07/20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:木聚醣水解酶高密度醱酵透析酵素水解木寡糖
外文關鍵詞:XylanaseHigh-cell-density cultureDialysisEnzymatic hydrolysisXOS
相關次數:
  • 被引用被引用:4
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究將Bacillus halodurans的xyn45基因片段基因重組在pET29a質體上轉殖於大腸桿菌E. coli BL21(DE3)。重組大腸桿菌培養於PM培養基進行高密度醱酵並持續進行饋料,並加入IPTG誘導使其表現內切型木聚醣水解酶。在0.10 mM/OD600 IPTG誘導18小時後,發現胞外蛋白質比活性平均為11.6 ± 0.4 U/mg。高密度醱酵時,為了達到細胞高密度而持續饋料,造成醱酵培養基中的鹽類濃度過高,明顯會抑制酵素活性。因此,透過離心濃縮管以及超濾法透析後去除金屬離子,可克服鹽類的抑制作用。與原始酵素液相比,去除離子之後酵素液的比活性平均可提升36%。
在酵素應用方面,本研究使用之木質纖維素的原料為蔗渣。以鹼液進行前處理之後,使用三種方式萃取出半纖維素,萃取率由高到低分別為酒精沉澱法、超濾法以及兩步驟法。將萃取得到的半纖維素與Xyn45 基因重組酵素在不同pH值之下進行水解反應,得到木寡糖(XOS)。酒精沉澱法在pH 7.5時,木寡糖產率為25.0%;超濾法及兩步驟法在pH 7時,則分別達到27.5%及30.4%的木寡糖產率。
Extracellular endo-1,4-β-xylanase encoded by the xyn45 gene from Bacillus halodurans was over-expressed in recombinant Escherichia coli BL21 (DE3) using plasmid pET29a as the vector. The recombinant E. coli was cultivated to high-cell-density by fed-batch fermentation in PM medium and IPTG was used to induce the synthesis of this recombinant endoxylanase. As 0.10 mM of IPTG per OD (600 nm) of cells was used for the induction, the extracellular endoxylanase with a specific activity of 11.6 U/mg in the final culture medium was obtained after induced 18 hour. In the fed-batch fermentation to achieve a high cell density, salts could be fed too much and result in significantly inhibition of the endoxylanase activity by high salt concentrations in the fermentation medium. Desalting of the enzyme preparation by dialysis to removal metal ions could increase about 36% in the specific activity.
For the application of recombinant enzyme for producing xyligoligoccharides (XOS), xylan was prepared from the alkaline solution of sugarcane bagasse by three kinds of method. The xylan extraction yield from high to low was found by precipitation with ethanol, ultrafiltration, and then two-step method. The resultant hemicellulose (xylan) was then incubated with enzyme preparation in different pH values for XOS production. The XOS mixture contained a total of 25.0% (w/w) of xylobiose and xylotriose as the xylan was prepared by ethanol precipitation in pH 7.5. The XOS yields were 27.5% and 30.4%, respectively, when ultrafiltration and two-step method were used in pH 7.

致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 大腸桿菌 3
2.2 木質纖維素 (Lignocellulose) 4
2.2.1 纖維素 (Cellulose) 4
2.2.2 半纖維素 (hemicellolose) 6
2.2.3 木質素(Lignin) 6
2.3 鹼處理 (Alkaline pretreatment) 7
2.4 蔗渣(Sugarcane bagasse, SCB) 8
2.5 木聚醣水解酶 (Xylanase) 9
2.6 木寡糖 (Xylooligosaccharide, XOS) 12
第三章 實驗材料與方法 13
3.1 實驗藥品 13
3.1.1 重組菌的培養及誘導 13
3.1.2 高壓破菌 14
3.1.3 蛋白質定量及活性測定 14
3.1.4 SDS-PAGE 14
3.1.5 鹼處理法萃取木聚醣 15
3.1.6 組成分析 15
3.2 實驗儀器與材料 16
3.2.1 儀器 16
3.2.2 材料 18
3.3 菌種來源及培養基 19
3.3.1 菌種來源 19
3.3.2 培養基 19
3.4 重組菌培養及誘導 19
3.4.1 塗盤培養 19
3.4.2 前培養 19
3.4.3 放大50 ml 20
3.4.4 高密度培養 (High-Cell-Density Cultivation, HCDC) 20
3.5 酵素樣品處理 23
3.6 SDS-PAGE 24
3.7 活性測定方法(Bailey et al., 1992) 26
3.8 蛋白質定量 29
3.9 透析方法 30
3.9.1 超濾法 (Ultrafiltration, UF) 30
3.9.2 離心濃縮管 (Centrifugal Concentrators, CC) 31
3.10 組成分析 32
3.10.1 萃取率測定 32
3.10.2 碳水化合物分析 33
3.10.3 酸不可溶木質素分析 34
3.11 實驗架構 35
3.12 木聚醣之製備 36
3.12.1 酒精沉澱 36
3.12.2 超濾法 (Ultrafiltration, UF) 36
3.12.3 兩步驟法(先超濾法再酒精沉澱) 37
3.13 木寡糖(Xylooligosaccharide) 37
第四章 實驗結果與討論 38
4.1 搖瓶培養 38
4.2 高密度醱酵 40
4.2.1 生長曲線 40
4.2.2 活性分析及蛋白質濃度測定 41
4.2.3 高密度醱酵SDS-PAGE 42
4.2.4 透析結果 43
4.3 蔗渣組成 46
4.3.1 蔗渣萃取所得之半纖維素組成 48
4.4 木聚醣之萃取率 49
4.5 酵素水解反應 51
4.5.1 酒精沉澱法萃取的基質 51
4.5.2 超濾法萃取的基質 51
4.5.3 兩步驟法萃取的基質 52
第五章 結論與建議 65
5.1 結論 65
5.2 建議 66
第六章 參考文獻 67
附錄A、Xyn45序列資料(李, 2012) 72
附錄B、HPLC檢量線 74
附錄C、高密度醱酵重複實驗 76
丁勝華、歐仕益、趙健、王遠及胡長鷹(2010),利用蔗渣製備低聚木糖的工藝,食品研究與開發,第31卷第4期,第23~27頁。
李育錚(2012)。大量生產木聚醣水解酶重組蛋白以將廢棄農作物轉化為木寡糖。國立中正大學分子生物研究所碩士論文。
薛琮翰(2014)。利用基因重組大腸桿菌以大量表現來自嗜鹼性Bacillus halodurans的內切型木聚醣酶。國立中正大學化學工程研究所碩士論文。
Akpinar, O., AK, O., Kavas, A., Bakir, U. and Yilmaz, L. (2007). Enzymatic Production of Xylooligosaccharides from Cotton Stalks. Journal of Agricultural and Food Chemistry, 55(14), 5544-5551.
Akpinar, O., Erdogan, K., Bakir, U. and Yilmaz, L. (2010). Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. Food Science and Technology, 43(1), 119-125.
Azadi, P., Inderwildi, O. R., Farnood, R. and King, D. A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506-523.
Bailey, M. J., Biely, P. and Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Biotechnology, 23(3), 257-270.
Beg, Q. K., Kapoor, M., Mahajan, L. and Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56(3-4), 326-338.
Brunow, G., Lundquist, K. and Gellerstedt, G. (1999). Analytical Methods in Wood Chemistry, Pulping, and Papermaking.
Chirayil, C. J., Mathew, L. and Thomas, S. (2014). Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Reviews on advanced materials science, 37(1), 20-38.
Choi, J. H. and Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology, 64(5), 625-635.
Dussán, K. J., Silva, D. D. V., Moraes, E. J. C., Arruda, P. V. and Felipe, M. G. A. (2014). Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chemical Engineering Transactions, 38.
Faryar, R., Linares-Pastén, J. A., Immerzeel, P., Mamo, G., Andersson, M., Stålbrand, H., Mattiasson, B. and Karlsson, E. N. (2015). Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food and Bioproducts Processing, 93, 1-10.
Geng, Z. C., Sun, J. X., Liang, S. F., Zhang, F. Y., Zhang, Y. Y., Xu, F. and Sun, R. C. (2006). Characterization of Water- and Alkali-Soluble Hemicellulosic Polymers from Sugarcane Bagasse. International Journal of Polymer Analysis and Characterization, 11(3), 209-226.
Gupta, S., Adlakha, N. and Yazdani, S. S. (2013). Efficient extracellular secretion of an endoglucanase and a beta-glucosidase in E. coli. Protein Expr Purif, 88(1), 20-25.
Harris, A. D. and Ramalingam, C. (2010). Xylanases and its Application in Food Industry. Experimental Sciences, 1(7), 01-11.
Hyeon-Jin Sun, Shigeki Yoshida, Nyun-Ho Park and Kusakabe, I. (2002). Preparation of (1→4)-β-D-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan: suitability of cotton-seed xylan as a starting material for the preparation of (1→4)-β-D xylooligosaccharides. Carbohydrate Research, 337, 657-661.
Jain, I., Kumar, V. and Satyanarayana, T. (2015). Xylooligosaccharides an economical prebiotic from agroresidues and their health benefits. Experimental Biology, 53, 131-142.
Kim, J. S., Lee, Y. Y. and Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42-48.
Kim, M. and Day, D. F. (2011). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Industrial Microbiology & Biotechnology, 38(7), 803-807.
Lavaracka, B. P., Griffin, G. J. and Rodmanc, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose,arabinose,glucose and other products. Biomass and Bioenergy, 23, 367-380.
Li, H., Kim, N. J., Jiang, M., Kang, J. W. and Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresource Technology, 100(13), 3245-3251.
Lin, Y. S., Tseng, M. J. and Lee, W. C. (2011). Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochemistry, 46(11), 2117-2121.
Miller, G. L., Blum, R., Glennon, W. E. and Burton, A. L. (1960). Measurement of carboxymethylcellulase activity. Analytical Biochemistry, 1(3), 127-132.
Otieno, D. O. and Ahring, B. K. (2012). A thermochemical pretreatment process to produce xylooligosaccharides(XOS),arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses. Bioresource Technology, 112, 285-292.
Pandey, A., Soccol, C. R., Nigam, P. and Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74, 69-80.
Polizeli, M. L., Rizzatti, A. C., Monti, R., Terenzi, H. F., Jorge, J. A. and Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577-591.
R.L., H., E, A., E.L., J. v. R. and S., H. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602-619.
Rezende, C. A., Lima, M. A. d., Maziero, P., deAzevedo, E. R., Garcia, W. and Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(54).
Rocha, G. J. d. M., Martin, C., Soares, I. B., Maior, A. M. S., Baudel, H. M. and Abreu, C. A. M. d. (2011). Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass and Bioenergy, 35(1), 663-670.
Rosano, G. L. and Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 5, 172.
Shankarappa, T. H. and Geeta, G. S. (2013). Alkali and autohydrolysis pretreatments for effective delignification and recovery of cellulose and hemicellulose in selected agro residues. Karnataka Journal of Agricultural Science, 26(1), 67-75.
Sjostrom, E. (1993). Wood Chemistry: Fundamentals and Applications.
Sun, J. X., Sun, X. F., Zhaoa, H. and Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331-339.
Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11.
Va´zquez, M. J., Alonso, J. L., Domı´nguez, H. and Parajo´, J. C. (2000). Xylooligosaccharides: manufacture and applications. Trends in Food Science & Technology, 11, 387-393.
Xavier, M. C. A. and Franco, T. T. (2014). Batch and Continuous Culture of Hemicellulosic Hydrolysate from Sugarcane Bagasse for Lipids Production. Chemical Engineering Transactions, 38.
Yang, C. H., Yang, S. F. and Liu, W. H. (2007). Production of Xylooligosaccharides from Xylans by Extracellular Xylanases from Thermobifida fusca. Journal of Agricultural and Food Chemistry, 55(10), 3955-3959.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊