跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高于迦
研究生(外文):Yu-Jia Gao
論文名稱:摻雜錳硫化鋅奈米微粒之製備與其發光特性之研究
論文名稱(外文):Preparation and Luminescence Properties of Manganese Doped ZnS Nanoparticles
指導教授:胡毅胡毅引用關係
指導教授(外文):Yi Hu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:86
中文關鍵詞:硫化鋅摻錳硫化鋅螢光分析奈米
外文關鍵詞:ZnSZnS:MnPLnanocrystal
相關次數:
  • 被引用被引用:5
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
本實驗選擇以具有優異光電特性之ZnS當做螢光體之母體材料,並加入不同濃度之錳元素作為激活劑。實驗製程以反應沉澱法製備含錳之奈米硫化鋅微粒,並改變硫化鋅含錳量,配合在不同溫度下的熱處理,研究不同條件對其螢光特性之改變情形,與探討奈米粒徑對其帶來的影響。
非奈米級粒徑之ZnS:Mn螢光體,經由光激發光產生能量轉移至錳離子電子能階中,導致Mn2+發出波長585nm(2.12 eV)橘黃色光之特性光譜,而這是由於Mn2+離子在3d軌域內電子遷移4T1→6A1所產生的結果。而本實驗中摻錳量1%之樣品,發光波長約在592nm,且摻錳量提高至5%後,其發光波長最高可偏至600nm。此較一般bulk之摻錳硫化鋅發光位置偏向長波長區域。
當粒子尺寸小至奈米等級時,各個離子所受到的結晶場影響將會減弱,同時亦可能受到量子侷限(Quantum confinement)的影響,使其電子遷移軌道產生改變,造成發光之波長偏移;奈米級之粒徑除了會造成發光波長往較長波長區偏移外,且吸收激光波長λex之位置也會隨著粒徑大小而改變。由研究中發現,若粒子的尺寸愈小,其λex愈偏向高能量之區域。
由FTIR光譜與PL螢光光譜中可知,熱處理溫度200℃對樣品並沒有造成影響,而熱處理至300℃與400℃後之樣品會具有較高的螢光強度,這是由於熱處理前樣品粉末內含有較多C=O與COO-之有機物,影響了能量之吸收與轉移過程,故熱處理300℃與400℃後有機物減少造成螢光強度上升。而含錳量5%之樣品在熱處理至400℃後,其螢光強度反而比在300℃下熱處理後之樣品還低;此乃是因為熱處理造成錳進入硫化鋅晶格中,而當含量超出其最適量時產生濃度消光之結果,使得螢光強度不增反減。
We choose ZnS as host material in this study because of its excellent photoelectric property, and adding Manganese element of different concentration as activator. Co-precipitation method is used to prepare manganese doped zinc sulfide nanocrystal, and PL analysis is performed to realize the change of PL property made by different manganese concentration and heat treatment. Also, the effect of nanosize to sample is discussed.
The recombination energy of electron-hole pairs in ZnS crystal transfer to Mn2+ ion, causing it to emit characteristic spectra. This yellow spectra of bulk ZnS:Mn observed in photoluminescence has peak at 585nm (2.12 eV), and this is associated with the 4T1→6A1 transition of Mn2+ ion in 3d orbit. The sample that 1% Mn doped has a λem of 592nm, and theλem shifts to 600nm when the concentration of Mn doped increases to 5%. Comparing to common bulk ZnS:Mn, the λem of ZnS:Mn nanocrystal we made shifts to longer wavelength.
When the particle size decreases to nanosize, the effect of crystal field to each ion will decrease. Also, as a result of quantum confinement, the electron transition orbit changes so that the emitting wavelength shifts. Nanosize not only makes emission wavelength shift to longer wavelength area but also causing the excitation wavelength λex changes with particle size; if the size of particle become smaller, the λex shifts to higher energy area.
We can know from FTIR and PL spectra that heat treatment temperature of 200℃ doesn’t almost do no changes to our sample, but 300℃ and 400℃ make sample having higher luminous strength. This result is due to the organic substance like C=O and COO- in sample powder before heat treatment, and the organic substance affects absorption and transfer process of energy so that 300℃ and 400℃ heat treatment make sample having higher luminous strength by decreasing organic substance. But sample with 5% Mn heat treated to 400℃ has lower luminous strength than 300℃; this is due to the result of concentration quenching.
目 錄
摘要Ⅰ
目錄Ⅴ
表目錄Ⅷ
圖目錄Ⅸ
第一章 序論1
第二章 文獻回顧4
2-1 螢光材料之發展過程4
2-2 螢光材料的種類與應用8
2-3 電激發光(Electroluminscence)簡介9
2-3-1 電激發光之發展歷史9
2-3-2 電激發光之原理10
2-4 母體材料(Host materials)11
2-4-1 母體材料簡介11
2-4-2 硫化鋅之性質12
2-5 發光中心(Luminescent Centers)13
2-5-1 原子遷移(Atomic Transition)13
2-5-2 晶體場(Crystal Field)14
2-5-3 錳離子發光中心(Mn2+ Luminescent Center)15
第三章 實驗流程17
3-1 實驗原料與使用設備17
3-1-1 原料17
3-1-2 設備17
3-2 實驗方法與流程18
3-2-1 含錳硫化鋅微粒製備18
3-2-2 熱處理19
3-3 特性分析19
3-3-1 DTA熱分析儀19
3-3-2 X-ray繞射儀19
3-3-3 TEM穿透式電子顯微鏡20
3-3-4 PL螢光分析儀20
3-3-5 FTIR紅外線光譜分析21
第四章 結果與討論22
4-1 DTA熱分析22
4-2 X-ray繞射分析22
4-2-1 成份與結構22
4-2-2 硫化鋅之氧化溫度23
4-2-3 粉體粒徑大小24
4-3 TEM穿透式電子顯微鏡24
4-4 PL螢光分析25
4-4-1 激光光譜(Photoluminescence Excitation Spectra)25
4-4-2 螢光光譜(Photoluminescence Spectrum)28
4-4-2-1 螢光效率28
4-4-2-2 硫化鋅螢光光譜29
4-4-2-3 摻錳奈米硫化鋅之螢光光譜29
4-5 FTIR紅外線光譜分析30
4-5-1 硫化鋅之紅外線光譜30
4-5-2 摻錳奈米硫化鋅之紅外線光譜分析31
第五章 結論33
第六章 參考文獻35
1. 余樹楨, “晶體之結構與性質”, 第一版, 勃海堂文化公司, 362 (1989)
2. 徐開鴻, “氧化鋅鎵系螢光材料的製備與其發光特性之研究”, 大同工學院材料工程學系, (1998)
3. Philip D. Rack, Paul H. Holloway, Materials Science and Engineering, R21 (1998) 171-219
4. Markku Leskela, Journal of Alloys and Compounds, 275-277 (1998) 702-708
5. 螢光體Handbook編集委員會; “螢光體Handbook”, Ohm社, 東京, (1980)
6. 鹽谷繁雄; “ELECTRONIC CERAMICS”, 11, 17, (1980)
7. J.E. Yang(Ed.), “The Application and Investigation of Luminescent Materials in Electronic Industry”, Technical Report of ITRI, Hsinchu (Taiwan), (1992)
8. H. Gudden, R.W. Pohl, Z.F. Physik 2 (1929) 192
9. G. Destriau, Journal de Chem. Phys. et Physico-Chemie boil. 33 (1936) 620
10. L.E. Tannas, Flat Panel Displays and CRTs, van Nostrand Reinhold Co., New York, 1985
11. J.A. Castellano, Handbook of Display Technology, Hartcourt Brace Jovanovich, New York, 1992, pp.8
12. A. Vecht, Journal of Applied Physics 1 (1968) 134
13. T. Inoguchi, M. Takeda, Y. Kakihara, M. Yoshida, SID Digest (1974) 86
14. M.J. Russ, D.I. Kennedy, Journal of the Electrochemical Society (1967) 1066
15. R.E. Coovert, C.N. King, R.T. Tuenge, SID Digest (1982) 128
16. W.A. Barrow, R.C. Coovert, E. Dickey, C.N. King, C. Laakso, S.-S. Sun, R.T. Tuenge, SID Digest (1993) 761
17. L. Brus, J. Quantum Electron, 22 (1986) 1909
18. J. Tanaka, K. Suto, H. Kubayashi and H. Sasakura, Jpn. J. Appl.
19. Y. Wang and N. Herron, J. Phys. Chem., 95 (1991) 525
20. D.S. McClure, J. Chem. Phys., 39 (1963) 2850
21. D. Langer and S. Ibuki, Phys. Rev., 138 (1965) A809
22. D.W. Langer, J.C. Helmer and N.H. Weichert, J. Lumines., 1/2, 341 (1970)
23. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett., 72 (1994) 416
24. M. Tanaka, J. Qj, Y. Masumoto, Phys. Rev. B, Submitted for publication
25. M. Tanaka, J. Qj, Y. Masumoto, Journal of Luminescence 87-89 (2000) 472-474
26. Y. Wang and N. Herron, Solid State Commun., 77 (1991) 33
27. Hua Yang, Zichen Wang, Lizhu Song, Muyu Zhao, Yimin Chen, Kai Dou, Jiaqi Yu, Li Wang, Materials Chemistry and Physics, 47 (1997) 249-251
28. Wei Chen, Gohau Li, Jan-Olle Malm, Yining Huang, Reine Wallenberg, Hexiang Han, Zhaoping Wang, Jan-Olov Bovin, Journal of Luminescence, 91 (2000) 139-145
29. R.N. Bhargava, D. Gallagher, T. Welker, J. Lumin. 60༕ (1994) 275
30. R.S. Kane, R.E. Cohen, R. Silbey, Chem. Mater. 11 (1999) 90
31. K. Sooklal, B.S. Cullm, S.M. Angel, C.J. Murphy, J. Phys. Chem. 100 (1996) 4551
32. G. Counio, T. Gacoin, J.P. Boilot, J. Phys Chem. B, 102 (1998) 5257.
33. I. Yu, T. Isobe, M. Senna, J. Phys. Chem. Solids, 57 (1996) 373
34. C. Jin, J. Yu, L. Sun, K. Dou, S. Hou, J. Zhao, Y. Chen, S. Huang, J. Lumin., 66༛ (1996) 315
35. R.N. Bhargava, J. Lumin., 70 (1996) 85
36. L. Levy, N. Feltin, D. Ingert, M.P. Pileni, J. Phys. Chem. B, 101 (1997) 9153
37. L. Levy, N. Feltin, D. Ingert, M.P. Pileni, Langmuir, 15 (1999) 3386
38. A.A. Bol, A. Meijerink, Phys. Rev. B, 58 (1998) R15997
39. N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, T. Kushida, J. Phys. Chem. B, 103 (1999) 754
1. L. Ozawa, H.N. Hersh, 第155回螢光體同學會論文集, (1974)
41. S. Kuboniwa, H. Kawai, T. Hoshina; Jpn. J. Appl. Phys., 19 (1980) 1647
42. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan, 9 (1954) 753
43. Y. Tanabe and S. Sugano, ibid., 766
44. D.S. McClure, Solid State Physics, Vol.9, ed. By F. Seitz and D. Turnbull, Academic Press (1959) 399
45. J.S. Griffith, The Theory of Transition Metal Ions, Cambridge Univ. Press (1964)
46. C.K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press (1962)
47. 柯清水,“無機化學”, 水牛出版社, pp. 387-414
48. R. Drago, “Physical Methods in Inorganic Chemistry”, pp. 54-61 and pp. 222-224
49. Anthony R. West, “Solid State Chemistry and ies Applications”, John Wiley & Sons, pp. 305-315 (1984)
50. J.A. Duffy, Bonding, Energy Levels and Bands in Inorganic Solids, Wiley, New York, 1990, pp.40
51. James E. Huheey, “Inorganic Chemistry”, 2nd. Ed. Harper & Row, 350 (1978)
52. Charles Kittel, Introduction to Solid State Physics, 7th ed., (1997)
53. Yukito Tanabe, Satoru Sugano; J. Phys/ Soc. Japan. 9 (1954) 753
54. William L. Jolly, “Modern Inorganic Chemistry”, 2nd Edit., McGraw-Hill, (1991)
55. T. Igarashi, T. Isobe, M. Senna, Phys. Rev. B 56 (1997) 6444
56. L. Spanbel, M.A. Anderson, J. Am. Chem. Soc. (1991) 2826
57. Shimadzu Corp. “Instruction Manual of RF-5301PC”, 12-1 (1995)
58. P.J. Dean, D.C. Herbert, Excitons, in K. Cho (Ed.), Springer-Verlag, Berlin-Heidelberg, 1994, pp.38
59. O.K. Srivastava and E.A. Secco, Can. J. Chem., 45 (1967) 585
60. J.W. Kauffman, R.H. Hauge and J.L. Margrave, J. Phys. Chem., 89 (16) (1985) 3541
61. B. Mokili, Y. Charreire, R. Cortes, D. Lincot, Thin Solid Films, 288 (1996) 21-28
62. Robert Vacassy, Stefan M. Scholz, Joydeep Dutta, Christopher John George Plummer, Raymond Houriet, and Heinrich Hofmann, J.Am. Ceram. Soc., 81 [10] (1998) 2699-705
63. E.L. Smith, M.D. Porter, J. Phys. Chem. 97 (1993) 8032
64. M. Konishi, T. Isobe, M. Senna, Journal of Luminescence 93 (2001) pp.1-8
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊